Multiplexed detection of bacterial pathogens based on a cocktail of dual-modified phages.

Anal Chim Acta

Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. Electronic address:

Published: June 2021

Rapid, quantitative, and sensitive assays for the multiplexed detection of bacterial pathogens are urgently needed for public health. Here, we report the generation of dual-modified phage sensors for the simultaneous detection of multiple pathogenic bacteria. The M13KE phage was dual modified to display the targeting peptide on the minor coat protein pIII (∼5 copies) and the streptavidin-binding (StrB) peptide on the major coat protein pVIII (∼2700 copies). The targeting peptide specifically recognizes the target bacteria, and the StrB peptide acts as the efficient signal amplification and transduction unit upon binding with fluorescently tagged streptavidin. The bright fluorescence emitted from individual target bacteria can be clearly distinguished from the background via both the flow cytometry and fluorescence microscopy. Three different dual-modified phages targeting E. coli O157:H7, Salmonella Typhimurium, and Pseudomonas aeruginosa were constructed, and high specificity was verified via a large excess of other non-target bacteria. Using a 40 mL sample volume, the target bacteria detection limit was approximately 10 cells/mL via flow cytometry measurement in the presence of other non-target bacteria. By combining these three dual-modified phages into a cocktail, simultaneous detection and quantification of three target bacterial pathogens was demonstrated with good linearity. The strategy of constructing dual-modified phage represents a promising tool in the detection of bacterial pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338596DOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
16
detection bacterial
12
dual-modified phages
12
target bacteria
12
multiplexed detection
8
dual-modified phage
8
simultaneous detection
8
targeting peptide
8
coat protein
8
strb peptide
8

Similar Publications

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Helicobacter pylori and its role in the pathogenesis of follicular gastritis: an overview.

Rev Gastroenterol Peru

January 2025

Infectious Diseases and Cancer Research Group, Centro de Investigaciones Clinicas, Fundacion Hospital San Pedro, Pasto, Nariño, Colombia; Colombian Research Group on Helicobacter pylori, Bogota D.C., Colombia.

The role of Helicobacter pylori in the pathogenesis of peptic ulcers and gastric adenocarcinoma is widely known; however, it is not entirely understood how bacterial infection is closely related to the genesis of follicular gastritis and some types of gastric lymphoma. Diagnosing and pathogenic mechanisms follicular gastritis remain challenging. Therefore, this article aims to examine the role of H.

View Article and Find Full Text PDF

Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!