Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemotherapy-induced neutropenia, a symptom of neutrophil depletion, makes cancer patients highly susceptible to invasive fungal infection with substantial morbidity and mortality. To address the cryptococcal brain infection in this condition, this study attempts to arm neutrophils (NEs) with antibiotics to potentiate the antifungal capability of NEs. To allow effective integration, amphotericin B, a potent antibiotic, is assembled with albumin nanoparticles through hydrophobic and hydrogen-bond interactions to form AmB@BSA nanoparticles (A-NPs). The nutrient composition (albumin) and virus-like size (~40 nm) facilitate efficient uptake of A-NPs by NEs to construct the antibiotics-armed NEs. It is demonstrated that the armed NEs can maintain the intrinsic biological functions of NEs, such as cell viability and capacity of migration to an inflammatory site. In a neutropenic mouse model of brain fungal infection, the treatment with the armed NEs allows for preventing fungal invasion more effectively than that with the native NEs, without the apparent systemic toxicity. Such a synergistic anti-infection system maximizes the antifungal effects by taking advantage of NEs and antibiotics. It provides a potential NEs-mediated therapeutic approach for treating fungal infection caused by chemotherapy-induced neutropenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.120849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!