MnCoS - MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery.

J Colloid Interface Sci

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Electrochemical Power Sources Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India. Electronic address:

Published: October 2021

The supercapattery, an ideal electrochemical energy storage device, which can deliver high energy like battery and high power like supercapacitor. Transition metal sulphides' energy storage capabilities have unfurled beyond the realm of ruthenium and manganese-based oxides by the versatile affordable sulphospinel transition metal sulphides such as MnCoS (MCS). The advancement of synergistic nano-architectures of these transition metal sulphides with two-dimensional MXene material adulated the conductivity and highly reversible redox nature. The hybrid MCS-MXene was synthesised through facile cost effective hydrothermal method and the material were characterised using basic X-Ray Diffraction (XRD) to advanced tools as like electron energy loss spectroscopy (EELS). The electrochemical results depict that the supercapattery electrode of 2D synergistic MCS-MXene hybrid architectures shows highly improved specific capacitance of 600 C/g at 1 A/g current density than pristine MXene and MCS. The fabricated asymmetric supercapattery using hybrid MCS-MXene and bio-derived activated carbon (AC) shows a high specific energy and power density of 25.6 Wh/kg and 6400 W/kg, respectively with excellent cycling stability of 100% capacitance retention after 12,000 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.05.037DOI Listing

Publication Analysis

Top Keywords

transition metal
12
asymmetric supercapattery
8
energy storage
8
metal sulphides
8
hybrid mcs-mxene
8
energy
5
mncos mxene
4
mxene novel
4
hybrid
4
novel hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!