Spontaneous rescue of a FMR1 repeat expansion and review of deletions in the FMR1 non-coding region.

Eur J Med Genet

Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense M, Denmark.

Published: August 2021

Fragile X syndrome (FXS) is caused by CGG-repeat expansion in the 5' UTR of FMR1 of >200 repeats. Rarely, FXS is caused by deletions; however, it is not clear whether deletions including only the non-coding region of FMR1 are pathogenic. We report a deletion in the 5' UTR of FMR1 in an unaffected male infant and review 12 reported deletions involving only the non-coding region of FMR1. Genetic testing was requested in a male infant born to a mother harbouring a FMR1 full mutation. The maternal grandmother carried a FMR1 premutation. FMR1 CGG repeats were analysed using repeat-primed PCR. Only a short PCR fragment was amplified and subsequent Sanger sequencing detected an 88 bp deletion in hemizygous form. The deletion included all CGG repeats and flanking sequences but no FMR1 exons. Linkage analysis using STR markers revealed that the deletion had occurred on the allele, which was expanded in the mother and the maternal grandmother. Reverse transcription and quantitative PCR showed normal FMR1 mRNA levels. Grønskov et al. reported a 157 bp deletion of all CGG repeats and flanking sequences in a female without FXS hemizygous for the FMR1 gene due to a deletion on the other X chromosome. Protein expression was unaffected by the deletion. The reported deletion comprises the deletion detected in the male infant. At almost 2 years of age he is unaffected. Based on these observations and the normal FMR1 mRNA level, we conclude that a spontaneous rescue of an FMR1 repeat expansion has occurred.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2021.104244DOI Listing

Publication Analysis

Top Keywords

fmr1
14
non-coding region
12
male infant
12
cgg repeats
12
deletion
9
spontaneous rescue
8
rescue fmr1
8
fmr1 repeat
8
repeat expansion
8
fxs caused
8

Similar Publications

Novel p.Arg534del Mutation and MTHFR C667T Polymorphism in Fragile X Syndrome (FXS) With Autism Spectrum Phenotype: A Case Report.

Case Rep Genet

January 2025

Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.

Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.

View Article and Find Full Text PDF

To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.

View Article and Find Full Text PDF

Background: An estimated 17% of all couples worldwide are involuntarily childless (infertile). The clinically identifiable causes of infertility can be found in the male or female partner or in both. The molecular pathophysiology of infertility still remains unclear in many cases but is increasingly being revealed by genetic analyses.

View Article and Find Full Text PDF

Improvement of ovarian function in a premature ovarian failure mouse model using Vitex agnus-castus extract.

JBRA Assist Reprod

January 2025

Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Objective: Premature ovarian failure (POF) leads to infertility. Numerous researchers have endeavored to enhance ovarian function through antioxidant interventions. Extract from Vitex agnus-castus (VAC) has demonstrated a protective effect.

View Article and Find Full Text PDF

Circuit dysfunction in autism may involve a failure of homeostatic plasticity. To test this, we studied parvalbumin (PV) interneurons which exhibit rapid homeostatic plasticity of intrinsic excitability following whisker deprivation in mouse somatosensory cortex. Brief deprivation reduces PV excitability by increasing Kv1 current to increase PV spike threshold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!