DNA Barcodes Combined with Multilocus Data of Representative Taxa Can Generate Reliable Higher-Level Phylogenies.

Syst Biol

Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 08003 Barcelona, Catalonia, Spain.

Published: February 2022

Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees, as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition of this multigene backbone DNA data for as few as 5-10% of the specimens in the total data set can produce high-quality phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data; phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830075PMC
http://dx.doi.org/10.1093/sysbio/syab038DOI Listing

Publication Analysis

Top Keywords

dna barcodes
12
incertae sedis
12
missing data
12
data
8
higher-level categories
8
multigene backbone
8
data set
8
dna
5
higher-level
5
species
5

Similar Publications

The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.

View Article and Find Full Text PDF

Description of five new species from southern China, with note on the type species of Pocock, 1901 (Araneae, Halonoproctidae).

Biodivers Data J

January 2025

Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University Baoding China.

Background: The genus Pocock, 1901 previously included 25 known species and one subspecies from Asia, 12 species and one subspecies were reported in China.

New Information: Five new species of Pocock, 1901 from southern China are described: (♂♀) from Hainan, (♂♀) from Chongqing, (♂♀) from Hunan, (♂) from Sichuan and (♂♀) from south part of Shaanxi. DNA barcodes of the new species described herein are provided.

View Article and Find Full Text PDF

Development of a mitochondrial mini-barcode and its application in metabarcoding for identification of leech in traditional Chinese medicine.

Sci Rep

January 2025

National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry, 201203, Shanghai, People's Republic of China.

In Traditional Chinese Medicine (TCM), the medicinal leech is vital for treatments to promote blood circulation and eliminate blood stasis. However, the prevalence of counterfeit leech products in the market undermines the quality and efficacy of these remedies. Traditional DNA barcoding techniques, such as the COI barcode, have been limited in their application due to amplification challenges.

View Article and Find Full Text PDF

The Tianshan wild fruit forest region is a vital repository of plant biodiversity, particularly rich in the unique genetic resources of endemic medicinal plants in this ecological niche. However, human activities such as unregulated mining and excessive grazing have led to a significant reduction in the diversity of these medicinal plants. This study represents the first application of DNA barcoding to 101 medicinal plants found in the Tianshan wild fruit forests, using three genetic loci along with morphological identification methods.

View Article and Find Full Text PDF

Advancements in DNA sequencing technology have facilitated the generation of a vast number of DNA sequences, posing opportunities and challenges for constructing large phylogenetic trees. DNA barcode sequences, particularly COI, represent extensive orthologous sequences suitable for phylogenetic analysis. Phylogenetic placement analysis offers a promising method to integrate COI data into tree-building efforts, yet the impacts of backbone tree completeness and species composition remain under-explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!