The transcription factor SOX9 is a key regulator of multiple developmental processes and is frequently re-expressed in non-small cell lung cancer (NSCLC). Its precise role in the progression of NSCLC histotypes has, however, remained elusive. We show that SOX9 expression relates to poor overall survival and invasive histopathology in human non-mucinous adenocarcinoma and is absent in murine early minimally invasive and low in human in situ adenocarcinoma. Interestingly, despite wide SOX9 expression across advanced NSCLC histotypes, its genetic deletion in the murine Kras ;Lkb1 model selectively disrupted only the growth of papillary NSCLC, without affecting the initiation of precursor lesions or growth of mucinous or squamous tissue. Spatial tissue phenotyping indicated a requirement of SOX9 expression for the progression of surfactant protein C-expressing progenitor cells, which gave rise to papillary tumours. Intriguingly, while SOX9 expression was dispensable for squamous tissue formation, its loss in fact led to enhanced squamous tumour metastasis, which was associated with altered collagen IV deposition in the basement membrane. Our work therefore demonstrates histopathology-selective roles for SOX9 in NSCLC progression, namely as a promoter for papillary adenocarcinoma progression, but an opposing metastasis-suppressing role in squamous histotype tissue. This attests to a pleiotropic SOX9 function, linked to the cell of origin and microenvironmental tissue contexts. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497254PMC
http://dx.doi.org/10.1002/path.5733DOI Listing

Publication Analysis

Top Keywords

sox9 expression
16
sox9
8
non-small cell
8
cell lung
8
lung cancer
8
nsclc histotypes
8
squamous tissue
8
progression
5
nsclc
5
tissue
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!