Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy.

Pflugers Arch

Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.

Published: August 2021

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of K2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-021-02559-6DOI Listing

Publication Analysis

Top Keywords

outward potassium
12
potassium currents
12
delayed outward
8
spinal bulbar
8
bulbar muscular
8
muscular atrophy
8
clenbuterol-sensitive delayed
4
currents cell
4
cell model
4
model spinal
4

Similar Publications

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Background: Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.
View Article and Find Full Text PDF

Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).

View Article and Find Full Text PDF

K currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice.

Am J Physiol Heart Circ Physiol

December 2024

Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.

Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated a role of cardiac K channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the gene (Calm1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!