While conventional MRI sequences cannot visualize tissues from the osteochondral junction (OCJ) due to these tissues' short transverse T /T * relaxations, ultrashort echo time (UTE) sequences can overcome this limitation. A 2D UTE sequence with a dual adiabatic inversion recovery preparation (DIR-UTE) for selective imaging of short T tissues with high contrast has previously been developed, but high sensitivity to eddy currents and aliased out-of-slice excitation make it difficult to image the thin layer of the OCJ in vivo. Here, we combine the DIR scheme with a 3D UTE cones sequence for volumetric imaging of OCJ tissues in vivo, aiming to generate higher OCJ contrast compared with a recently developed single IR-prepared UTE sequence with a fat saturation module (IR-FS-UTE). All sequences were implemented on a 3-T clinical scanner. The DIR-UTE cones sequence combined a 3D UTE cones sequence with two narrow-band adiabatic IR preparation pulses centered on water and fat spectrum frequencies, respectively. The 3D DIR-UTE cones sequence was first applied to a phantom, then to the knees of four healthy volunteers and four patients diagnosed with osteoarthritis and compared with the IR-FS-UTE sequence. In both phantom and volunteer studies, the proposed DIR-UTE cones sequence showed much higher contrast for OCJ imaging than the IR-FS-UTE sequence did. The 3D DIR-UTE cones sequence showed a significantly higher contrast-to-noise ratio between the OCJ and subchondral bone fat (mean, standard deviation [SD]: 25.7 ± 2.3) and between the OCJ and superficial layers of cartilage (mean, SD: 22.2 ± 3.5) compared with the IR-FS-UTE sequence (mean, SD: 10.8 ± 2.5 and 16.3 ± 2.6, respectively). The 3D DIR-UTE cones sequence is feasible for imaging of the OCJ region of the knee in vivo and produces both high resolution and high contrast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254801 | PMC |
http://dx.doi.org/10.1002/nbm.4559 | DOI Listing |
Sci Rep
December 2024
INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France.
Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.
View Article and Find Full Text PDFInt Ophthalmol
December 2024
Genetics Department, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.
Purpose: Description of retinal phenotype by structural and functional testing, ornithine plasma levels and mutational data of OAT gene in patients with Gyrate Atrophy (GA).
Methods: Ophthalmologic examination, fundus photography (CFP), autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT), Goldmann perimetry (GP), full-field electroretinogram (ffERG) and chromatic perimetry (CP) testing were performed. Ornithine plasma levels were measured.
Invest Ophthalmol Vis Sci
December 2024
Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States.
Purpose: The California National Primate Research Center contains a colony of rhesus macaques with a homozygous missense mutation in PDE6C (R565Q) which causes a cone disorder similar to PDE6C achromatopsia in humans. The purposes of this study are to characterize the phenotype in PDE6C macaques in detail to determine the onset of the cone phenotype, the degree to which the phenotype progresses, if heterozygote animals have an intermediate phenotype, and if rod photoreceptor function declines over time.
Methods: We analyzed spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and electroretinography (ERG) data from 102 eyes of 51 macaques (aged 0.
Exp Eye Res
December 2024
Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. Electronic address:
Restricted oxygen supply in the aging eye may lead to hypoxic conditions in the outer retina and contribute not only to physiological aging but also to nonhereditary degenerative retinal diseases. To understand the hypoxic response of specific retinal cell types, we performed single-cell RNA sequencing of retinas isolated from mice exposed to hypoxia. Significantly upregulated expression of marker genes in hypoxic clusters confirmed a general transcriptional response to hypoxia.
View Article and Find Full Text PDFDevelopment
December 2024
Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!