AI Article Synopsis

  • Selective M muscarinic acetylcholine receptor (mAChR) agonists are being studied to help with cognitive issues in neurodegenerative and neuropsychiatric disorders, with biperiden acting as a model to test their effects.
  • A study involving 12 healthy elderly subjects tested the impact of biperiden on cognitive function, showing that higher doses significantly impaired attention, verbal memory, and working memory.
  • The results highlighted the potential of using biperiden in pharmacological studies to demonstrate the efficacy of new cholinergic drugs aimed at enhancing cognition.

Article Abstract

Selective M muscarinic acetylcholine receptor (mAChR) agonists are being developed as symptomatic treatment for neurodegenerative and neuropsychiatric disorders that lead to cognitive dysfunction. Demonstrating cognition-enhancing effects in early-phase clinical development in healthy subjects is difficult. A challenge with the M mAChR antagonist biperiden could be used to demonstrate procognitive and pharmacological effects of selective M mAChR agonists. The aim of this study was to develop such a model. To this end, 12 healthy elderly subjects participated in a randomized, placebo-controlled, 3-way crossover study investigating tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) effects of 2 and 4 mg biperiden. Repeated PD assessments were performed using neurocognitive tasks and electrophysiological measurements. A population PK-PD model was developed. Four milligrams of biperiden showed significant impairment of sustained attention (-2.1 percentage point in adaptive tracking [95%CI, -3.043 to -1.148], verbal memory (2-3 fewer words recalled [95%CI, -5.9 to -0.2]) and working memory (up to a 50-millisecond increase in the n-back task reaction time [95%CI, 21.854-77.882]) compared with placebo. The PK data were best fitted by a 2-compartment model and showed high interoccasion and intersubject variability. Population PK-PD analysis quantified significant concentration-effect relationships for the n-back reaction time, n-back accuracy, and adaptive tracking. In conclusion, biperiden caused M mAChR-related dose- and concentration-dependent temporary declines in cognitive functioning. Therefore a biperiden pharmacological challenge model can be used for proof-of-pharmacology studies and to demonstrate cognition-enhancing effects of new cholinergic compounds that are being developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596596PMC
http://dx.doi.org/10.1002/jcph.1913DOI Listing

Publication Analysis

Top Keywords

challenge model
8
model healthy
8
healthy elderly
8
randomized placebo-controlled
8
machr agonists
8
cognition-enhancing effects
8
population pk-pd
8
adaptive tracking
8
reaction time
8
biperiden
6

Similar Publications

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!