Background: Lignocellulolytic enzymes are essential for agricultural waste disposal and production of renewable bioenergy. Many commercialized cellulase mixtures have been developed, mostly from saprophytic or endophytic fungal species. The cost of complete cellulose digestion is considerable because a wide range of cellulolytic enzymes is needed. However, most fungi can only produce limited range of highly bioactive cellulolytic enzymes. We aimed to investigate a simple yet specific method for discovering unique enzymes so that fungal species producing a diverse group of cellulolytic enzymes can be identified.
Results: The culture medium of an endophytic fungus, Daldinia caldariorum D263, contained a complete set of cellulolytic enzymes capable of effectively digesting cellulose residues into glucose. By taking advantage of the unique product inhibition property of β-glucosidases, we have established an improved zymography method that can easily distinguish β-glucosidase and exoglucanase activity. Our zymography method revealed that D263 can secrete a wide range of highly bioactive cellulases. Analyzing the assembled genome of D263, we found over 100 potential genes for cellulolytic enzymes that are distinct from those of the commercially used fungal species Trichoderma reesei and Aspergillus niger. We further identified several of these cellulolytic enzymes by mass spectrometry.
Conclusions: The genome of Daldinia caldariorum D263 has been sequenced and annotated taking advantage of a simple yet specific zymography method followed by mass spectrometry analysis, and it appears to encode and secrete a wide range of bioactive cellulolytic enzymes. The genome and cellulolytic enzyme secretion of this unique endophytic fungus should be of value for identifying active cellulolytic enzymes that can facilitate conversion of agricultural wastes to fermentable sugars for the industrial production of biofuels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140500 | PMC |
http://dx.doi.org/10.1186/s13068-021-01959-1 | DOI Listing |
Insects
December 2024
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
Cellulose is essential in the growth and development of herbivores. However, its limited utilization by herbivores is a key factor restricting their feed conversion rates. Cellulase can hydrolyze cellulose into glucose, and the addition of exogenous cellulase preparations to feed is an effective method for improving the cellulose utilization rate of ruminants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia.
The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.
View Article and Find Full Text PDFBBA Adv
December 2024
Novonesis, 2 Biologiens Vej, DK-2800 Lyngby Denmark.
Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:
Factors influencing inhibition of lignin on the enzymatic hydrolysis have not been fully elucidated. This study aims to elucidate the effects of lignin fractionation and condensation on its inhibition on enzymatic hydrolysis in aromatic-additive-assisted acidic pretreatment using 2-naphthol (2 N), 2-naphthol-7-sulfonate (NS), and resorcinol (RS). Through simulation reactions of pretreatment and physiochemical analyses of ethanol-extractable lignins (ELs) and cellulolytic enzyme lignins (CELs) from pretreatment, it was observed that 2 N addition in the acidic pretreatment could suppress lignin condensation.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!