Background: Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism.

Methods: Bone mesenchymal stem cells (BMSCs) were isolated and treated with different concentrations of NEO (0, 10, 30, 100 μM). Cell proliferation was analyzed by cell count kit-8 (CCK-8) assay. RNA-sequencing was performed on the isolated BMSCs with control and NEO treatment. Differentially expressed genes were obtained by R software. Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR was used to detect the expression of osteoblast markers. Western blot was used to evaluate the protein levels in BMSCs.

Results: NEO treatment significantly improved hBMSC proliferation at different time points, particularly when cells were incubated with 30 μM NEO (P < 0.05). NEO dose-dependently increased the ALP activity and calcium deposition than the control group (P < 0.05). A total of 855 differentially expressed genes were identified according to the significance criteria of log (fold change) > 1 and adj P < 0.05. DKK1 partially reversed the promotion effects of NEO on osteogenic differentiation of BMSCs. NEO increased levels of the β-catenin protein in BMSCs.

Conclusion: NEO plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of Wnt/β-catenin pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139099PMC
http://dx.doi.org/10.1186/s13018-021-02468-5DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
neo
10
bone mesenchymal
8
mesenchymal stem
8
stem cells
8
neo treatment
8
differentially expressed
8
expressed genes
8
differentiation bmscs
8
neohesperidin promotes
4

Similar Publications

The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

Root caries present a significant challenge in dentistry. The unsatisfactory prognosis of restorative treatments requires novel, noninvasive preventive strategies. Here, we developed an amelogenin-derived peptide-modified poly(amidoamine), PAMAM-C11, to prevent demineralization in caries lesions and control periodontal destruction.

View Article and Find Full Text PDF

Pedicle ossification is a rare but significant complication following mandibular reconstruction using a fibular free flap (FFF), a technique widely employed in maxillofacial surgery due to its reliable vascularized bone supply and low donor site morbidity. The FFF supports dental implantation and prosthetic rehabilitation, with its vascularized periosteum enhancing osteogenic potential. Despite these advantages, unexpected ossification of the flap's vascular pedicle may occur, potentially mimicking tumor recurrence and causing diagnostic uncertainty.

View Article and Find Full Text PDF

Objective: To prepare mesenchymal stem cells with antioxidant capacity (AO-MSC) from human umbilical cords and evaluate its cell biological properties.

Methods: In control group, mesenchymal stem cells (MSC) were isolated by digesting human umbilical cord Wharton's Jelly tissues with 0.2% collagenase II, and the released cells were collected and cultured in an animal serum-free culture medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!