µ-Crystallin: A thyroid hormone binding protein.

Endocr Regul

Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201.

Published: May 2021

µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more mRNA than the median level. Ablation of the gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with , an important modulator of metabolism, are reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202446PMC
http://dx.doi.org/10.2478/enr-2021-0011DOI Listing

Publication Analysis

Top Keywords

thyroid hormone
12
hormone binding
8
binding protein
8
µ-crystallin thyroid
4
protein µ-crystallin
4
µ-crystallin nadph-regulated
4
nadph-regulated thyroid
4
protein encoded
4
encoded gene
4
gene humans
4

Similar Publications

The effect of cardiac catheterization on thyroid functions in infants with congenital heart diseases: a prospective observational study.

Eur J Pediatr

January 2025

Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University Children's Hospital, Mansoura University, Gomhoria Street, Mansoura, 35516, Dakhlia, Egypt.

Unlabelled: This study aims to determine the incidence, clinical course, and risk factors of hypothyroidism following cardiac catheter (CC) in infants with congenital heart diseases (CHD). This prospective study involved 115 patients with CHD, all aged 3 years or younger, who underwent CC, as well as 100 healthy age- and sex-matched controls. Baseline thyroid function tests (TFTs) were conducted for both the patients and controls.

View Article and Find Full Text PDF

Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.

View Article and Find Full Text PDF

Objective: To assess the impact of parathyroid gland autotransplantation on the restoration of parathyroid function in patients who are hypoparathyroid after thyroidectomy.

Background Data: Hypoparathyroidism post-thyroidectomy arises when all parathyroid glands are devascularized or injured. Autotransplantation of compromised parathyroids aims to preserve their function and prevent permanent hypoparathyroidism.

View Article and Find Full Text PDF

Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.

View Article and Find Full Text PDF

Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.

Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!