With remarkable developments in technologies, the possibility of replacing injured tissue or organs with artificial ones via three-dimensional bioprinting is being improved. The basic prerequisite for successful application of bioprinting is high cell survival following printing. In this study, numerical calculations and experiments were performed to understand cell damage process incurred by forced extrusion bioprinters. Compressible and shear stresses were presumed to play a pivotal role within the syringe and needle, respectively, based on numerical calculation. To verify the numerical results, two experiments-pressurization in a clogged syringe and extrusion through syringe-needle-were conducted, and the damaged cell ratio (DCR) were measured by live/dead assays. Shear stress of needle flow had a great influence on DCR of discharged bioink, whereas effect of compressible stress in clogged syringe was relatively small. Cell damage in the needle flow is affected by moving distance under load as well as magnitude of shear stress. Applying this concept the differential equation of DCR growing was established, similar to the historied logistic equation for population dynamics, and the mathematical formula to predict DCR was explicitly represented splendidly as a function of only one independent variable, pressure work. The proposed formula was able to effectively predict DCR measurements for 43 bioprinting conditions, and the exactness confirmed the hypothesis for the theory. The presence of safe core zone, which may be related to the critical shear stress and stressed duration on cells, was theoretically conjectured from the DCR measurements, and further studies are necessary for an extensive and profound understanding. Fast printing is required for efficiency of a bio-structure fabrication; however, the higher shear stress accompanying increased operating pressure to speed up bioink discharge rate causes more cell damage. Employing the accurate formula presented, the optimal bioprinting conditions can be designed with ensuring targeted cell viability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/ac0415 | DOI Listing |
Drug Des Devel Ther
December 2024
Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: Ciprofol is a novel intravenous anesthetic that has been increasingly used in clinical anesthesia and sedation. Studies suggested that ciprofol reduced oxidative stress and inflammatory responses to alleviate cerebral ischemia/reperfusion (I/R) injury, but whether ciprofol protects the heart against I/R injury and the mechanisms are unknown. Herein, we assessed the effects of ciprofol on ferroptosis during myocardial I/R injury.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.
Methods: Here, various seed priming treatments, .
ACS Appl Mater Interfaces
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
The emergence of resistance in represents a significant global health challenge, particularly due to the hurdle of effectively penetrating biofilms with antimicrobials. Moreover, the rise of antibiotic-resistant pathogens has driven the urgent need for developing innovative therapeutic approaches to overcome antibiotic resistance. Antibacterial phototherapy strategies have shown great potential for combating pathogens due to their broad-spectrum antimicrobial activity, spatiotemporal controllability, and relatively low rate of resistance emergence.
View Article and Find Full Text PDFSmall Methods
December 2024
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
The development of front-side pastes suitable for devices with high sheet resistance such as tunnel oxide passivated contact (TOPCon), is of great significance but remains a considerable challenge. The optimization of the Ag-Si contact interface is crucial for enhancing contact and improving the efficiency of these devices. This work investigates the front-side Ag pastes with low Al content (<2 wt.
View Article and Find Full Text PDFFuture Microbiol
December 2024
Department of Pharmacy, Pharmaceutical Biology Laboratory, Universidade Estadual de Maringá, Maringá, Brazil.
Objectives: To evaluate the antifungal activity of extracts and compounds from against clinically relevant species, notably , and investigate possible mechanisms of action using electron microscopy and techniques.
Methods: Extracts and fractions of were obtained through turboextraction and partitioning, while the isolated compounds were previously purified. The ethyl acetate fraction (EAF) was characterized by HPLC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!