Diamidoximated cellulosic bioadsorbents from hemp stalks for elimination of uranium (VI) and textile waste in aqueous systems.

J Hazard Mater

Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India. Electronic address:

Published: September 2021

Selective abolition of hazardous U(VI) ions from nuclear power plants and removal of toxic colorants from textile industries pose great challenge. The work aims to develop cellulosic bioadsorbents from waste stalks of local weed, Cannabis sativa, commonly known as hemp. Cellulose nanofibers (PCFs) were chosen as substrates owing to their unique characteristics like surface hydroxyl groups, large surface to volume ratio and excellent mechanical properties. PCFs were isolated from hemp stalks and their structural characterization using FTIR, TGA and XRD ensured retrieval of pure crystalline cellulose. PCFs were modified via copolymerization to obtain diaminomaleonitrile adorned cellulose grafts (DAMNC) and further converted to get diamidoxime functionalized cellulose (DAOC). DAOC exhibited exceptional affinity with uranium (VI) ions, safranin-o and methylene blue dyes due to presence of two amidoxime groups. Sorption capability was ascertained for optimization of parameters like contact time, pH selectivity, adsorbent dosage and concentration. Sorption followed Pseudo second-order kinetic model with maximum sorption of 220 mg/g, 19.01 mg/g and 46.4 mg/g for U(VI) ions, SO and MB, respectively. EDX mapping revealed uniform adsorption of all the three pollutants on DAOC while XPS ascertained that the sorption originated from multiple interactions between the adsorbent and the pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126060DOI Listing

Publication Analysis

Top Keywords

cellulosic bioadsorbents
8
hemp stalks
8
uvi ions
8
diamidoximated cellulosic
4
bioadsorbents hemp
4
stalks elimination
4
elimination uranium
4
uranium textile
4
textile waste
4
waste aqueous
4

Similar Publications

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

In this study, a biocomposite material (CS-OXA/PP-SA) composed of ionic crosslinked chitosan-oxalate (CS-OXA) and chemically modified lignocellulosic biomass (potato (Solanum tuberosum L.) peel-HSO acid, PP-SA) was synthesized to serve as a bioadsorbent for removing methylene blue (MB) dye from aquatic systems. The research utilized response surface methodology (RSM) to evaluate the effects of three variables: CS-OXA/PP-SA dosage (0.

View Article and Find Full Text PDF

This work aimed to develop an anionic cellulose nanofiber (CNF) bio-adsorbent from date palm tree waste and to investigate its removal efficiency compared to cationic methylene blue dye from contaminated water. Date palm pulp was first prepared from date palm leaves through acid hydrolysis using HSO, followed by hydrolysis in a basic medium using KOH, in which the process completely removed the components of hemicellulose, lignin, and silica. To obtain anionic CNF, the resulting pulp was further treated with HSO, followed by centrifugation.

View Article and Find Full Text PDF

Background: Due to it containing cellulose, hemicellulose, and lignin with abundant specific functional groups which could interact with organic dyes, garlic peel (GP) might be used as an efficient biosorbent. The aim of this study is to evaluate the adsorption performances of GP-based bio-adsorbents and obtain optimum preparation conditions.

Methods: GP-based bio-adsorbents were prepared by thermal pyrolysis under different temperatures (150-400 °C).

View Article and Find Full Text PDF

Methylene blue sorption performance of lignocellulosic peach kernel shells modified with cellulose derivative chitosan as a new bioadsorbent.

Int J Biol Macromol

September 2024

Dept. of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Campus, Konya, Turkey; Konya Technical University Graduate Education Institute, Chemical Engineering Master Program, Konya, Turkey.

In this study, adsorption isotherms (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and thermodynamic properties of cationic methylene blue (MB) dye adsorption onto chitosan-coated peach kernel shell waste (CTS-PKSh) from wastewater were investigated. CTS was cross-linked with citric acid (CA) and glutaraldehyde (GA). The adsorbents were characterized by FE-SEM/EDS, FTIR, and particle size distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!