Efficiency of dihydroxamic and trihydroxamic siderochelates to extract uranium and plutonium from contaminated soils.

J Environ Radioact

Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université Bourgogne-Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France. Electronic address:

Published: September 2021

Actinide-based mineral phases occurring in contaminated soils can be solubilized by organic chelators excreted by plants, such as citrate. Herein, the efficiency of citrate towards U and Pu extraction is compared to that of siderophores, whose primary function is the acquisition of iron(III) as an essential nutrient and growth factor for many soil microorganisms. To that end, we selected desferrioxamine B (DFB) as an emblematic bacterial trishydroxamic siderophore and a synthetic analog, abbreviated (L)H, of the tetradentate rhodotorulic acid (RA) produced by yeasts. Firstly, the uranyl speciation with both ligands was assessed in the pH range 2-11 by potentiometry and visible absorption spectrophotometry. Equilibrium constants and absorption spectra for three [UO(DFB)H] (h = 1-3) and five [UO(L)H] (-1 ≤ h ≤ 1 for l = 1 and h = 0-1 for l = 2) solution complexes were determined at 25.0 °C and I = 0.1 M KNO. Similar studies for the Fe/(L) system revealed the formation of five species having [Fe(L)], [Fe(L)OH], [Fe(L)(OH)], [Fe(L)H], and [Fe(L)] compositions. Then, the ability of DFB, (L)H, and citrate to solubilize either U or Pu from pitchblende-rich soils (soils 1 and 2) or freshly plutonium-contaminated soils (LBS and PG) was evaluated by performing batch extraction tests. U was extracted significantly only by citrate after a day. After one week, the amount of U complexed by citrate only slightly exceeded that measured for the siderochelates, following the order citrate > (L)H ≥ DFB ≈ HO, and were comparatively very low. Pu was also more efficiently extracted by citrate than by DFB after a day, but only by a factor of ~2-3 for the PG soil, while the Pu concentration in the supernatant after one week was approximately the same for both natural chelators. It remained nearly constant for DFB between the 1st and 7th day, but drastically decreased in the case of citrate, suggesting chemical decomposition in the latter case. For the Fe-rich soils 1 and 2, the efficiencies of the three chelators to solubilize Fe after a day were of the same order of magnitude, decreasing in the order DFB > citrate > (L)H. However, after a week DFB had extracted ~1.5 times more Fe, whereas the amount extracted by the other chelators stayed constant. For the less Fe-rich LBS and PG soils contaminated by Pu, the amounts of extracted Fe were higher, especially after 7 days, and the DFB outperformed citrate by a factor of nearly 3. The higher capacity of the hexadentate DFB to extract Pu in the presence of Fe and its lower ability to mobilize U qualitatively agree with the respective complexation constant ratios, keeping in mind that both Pu-containing soils had a lower iron loading. Noticeably, (L)H has roughly the same capacity as DFB to solubilize U, but it mobilizes less Fe than the hexadentate siderophore. Similarly, citrate has the highest capacity to extract Pu, but the lowest to extract Fe. Therefore, compared to DFB, (L)H shows a better U/Fe extraction selectivity and citrate shows a better Pu/Fe selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2021.106645DOI Listing

Publication Analysis

Top Keywords

citrate
10
dfb
9
soils
8
contaminated soils
8
extracted citrate
8
extracted
5
efficiency dihydroxamic
4
dihydroxamic trihydroxamic
4
trihydroxamic siderochelates
4
extract
4

Similar Publications

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

The hydrothermal synthesis is presented of copper-doped carbon dots (Cu-CDs) from citric acid, urea, and copper chloride, resulting in blue-fluorescent particles with stable emission at 438 nm when excited at 340 nm. Through comprehensive spectroscopic and microscopic characterization (FTIR, XPS, UV, and HRTEM), the Cu-CDs demonstrated remarkable stability across varying pH levels, ionic strengths, temperatures, and UV exposure. Notably, Cu-CDs exhibit ultra-sensitive and selective detection of hexavalent chromium [Cr(VI)] ions in aqueous environments driven by fluorescence quenching.

View Article and Find Full Text PDF

Objectives: This study evaluates the effect of different irrigation solutions for postoperative pain in the regenerative endodontic treatments (RET) of necrotic teeth with open apex.

Materials And Methods: This study included necrotic, deeply carious lower molars of 42 patients. Access cavities of the teeth were opened and working lengths were measured at the first visit.

View Article and Find Full Text PDF

The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts.

View Article and Find Full Text PDF

Metabolomics approach to evaluate diclazuril-induced developmental toxicity in zebrafish embryo.

Aquat Toxicol

January 2025

Analytical Chemistry Laboratory, ASSIST Group, Main campus, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow India. Electronic address:

Anticoccidials, commonly used in veterinary medicine to treat coccidiosis in food-producing animals, particularly in poultry farming, are associated with potential environmental risks due to their excretion in manure and subsequent land-spreading. Diclazuril, a widely used anticoccidial, has been detected in groundwater, raising concerns about its impact on non-target species. This study investigates the developmental toxicity of diclazuril in zebrafish embryos over a 96-hour exposure period, utilizing biomarkers such as oxidative stress indicators and metabolomic profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!