AI Article Synopsis

  • * Ponds near these headwater streams can help reduce pesticide concentrations due to their capacity to hold water longer and allow for mitigation between upstream and downstream rivers.
  • * A study found that pesticide transformation products made up at least 50% of detected contaminants; while upstream contamination levels were high (up to 27 μg/L), downstream concentrations dropped significantly (to a maximum of 2.2 μg/L) after passing through a pond, indicating improved water quality.

Article Abstract

In France, more than 90% of monitored watercourses are contaminated with pesticides. This high contamination level increases at the head of agricultural watersheds, where dilution capacities are low and transport from treated lands is direct. Ponds, numerous around headwater streams, could provide additional protection against pesticide pollution. Because of their long hydraulic residence time and large water volumes, they mitigate pesticide concentrations between upstream and downstream rivers. However, pesticide transformation products may also be responsible for the degradation of environments, owing to their presence at high concentrations and their persistence, but related data are scarce, particularly because of their high level of molecular diversity. We first reported on the state of water contamination in agricultural headwater streams, based on high frequency water sampling. Analysis of 67 molecules (HPLC-ESI-MS/MS) showed pesticides and pesticide transformation product mixtures of up to 29 different compounds in one sample. Regardless of the sampling location, transformation products represented at least 50% of the detected compounds. Then, we demonstrated the capacity of a pond to reduce contaminant concentrations in downstream rivers for 90% of the detected compounds. Upstream from this pond, environmental quality or ecotoxicological standards were exceeded during sampling, with pesticide and transformation product sum concentrations of up to 27 μg/L. Downstream from the study pond, few exceedances were observed, with a maximum total concentration of 2.2 μg/L, reflecting significant water quality improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147715DOI Listing

Publication Analysis

Top Keywords

transformation products
12
headwater streams
12
pesticide transformation
12
contaminant concentrations
8
downstream rivers
8
transformation product
8
detected compounds
8
transformation
5
concentrations
5
pesticide
5

Similar Publications

Light People: Prof. Henry Snaith's (FRS) perovskite optoelectronics journey.

Light Sci Appl

January 2025

Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.

In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.

View Article and Find Full Text PDF

Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes.

View Article and Find Full Text PDF

Multienzyme Cascade Catalyzed Skeleton Rearrangement in a Caged Polyketide Biosynthesis.

Org Lett

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China.

Rearrangement of the skeleton is crucial for improving the structural complexity and diversity of type II polyketide natural products. In this study, we investigated the rearrangement process from a planar aromatic tetracyclic intermediate to the caged lactones, which is managed by five oxidoreductases. We chemically synthesized the proposed linear tetracyclic substrate, validated the transformation process through and experiments, and elucidated the enzyme-catalyzed mechanism using isotope labeling.

View Article and Find Full Text PDF

Genome-wide characterization of the WRKY gene family and the role of LsfWRKY29 in regulating somatic embryogenesis in hybrid sweetgum (Liquidambar styraciflua × L. formosana).

Int J Biol Macromol

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Hybrid sweetgum (Liquidambar styraciflua × L. formosana) is a globally significant forest tree resource, exhibiting significant economic, ornamental, ecological and medicinal values. Somatic embryogenesis (SE) is an effective reproductive strategy, having great application potential and economic value in large-scale propagation, artificial seed production, genetic transformation, germplasm preservation and biotechnology.

View Article and Find Full Text PDF

Ultrasound, pulsed electric fields, and high-voltage electrical discharges assisted extraction of cellulose and lignin from walnut shells.

Int J Biol Macromol

December 2024

Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:

Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!