This study evaluated the impact of unilateral cleft lip nasal deformity (uCLND) on the ability of the nasal passages to warm and humidify inspired environmental air using computational fluid dynamics (CFD) modeling. Nasal air conditioning was simulated at resting inspiration in ten individuals with uCLND and seven individuals with normal anatomy. The overall heat and water transfer through nasal mucosa was significantly greater (p = 0.02 for both heat and moisture fluxes) on the non-cleft side than on the cleft side. Unilateral median and interquartile range (IQR) for heat flux (W/m) was 190.3 (IQR 59.9) on the non-cleft side, 160.9 (IQR 105.0) on the cleft side, and 170.7 (IQR 87.8) for normal subjects. For moisture flux (mg/(s·m), they were 357.4 (IQR 112.9), 298.7 (IQR 200.3) and 320.8 (IQR 173.0), respectively. Significant differences of SAHF50 between cleft side of uCLND and normal existed except for anterior region. Nevertheless, air conditioning ability in subjects with uCLND was generally comparable to that of normal subjects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238907 | PMC |
http://dx.doi.org/10.1016/j.resp.2021.103694 | DOI Listing |
Interest in carbon dioxide (CO) sensors is growing rapidly due to the increasing awareness of the link between air quality and health. Indoor, high CO levels signal poor ventilation, and outdoor the burning of fossil fuels and its associated pollution. CO gas sensors based on integrated optical waveguides are a promising solution due to their excellent gas sensing selectivity, compact size, and potential for mass manufacturing large volumes at low cost.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.
View Article and Find Full Text PDFAir conditioning systems are widely used to provide thermal comfort in hot and humid regions, but they also consume a large amount of energy. Therefore, accurate and reliable load demand forecasting is essential for energy management and optimization in air conditioning systems. Within the current paper, a novel model on the basis of machine learning has been presented for dynamic optimal load demand forecasting in air conditioning systems.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
University of Ottawa, Ottawa, Canada.
We evaluated enterocyte damage (IFABP), microbial translocation (sCD14), and inflammatory responses (TNF-α, IL-6, CRP) in 16 older adults (66-78 years) during 8 hours rest in conditions simulating homes maintained at 22°C (control), the 26°C indoor temperature upper limit proposed by health agencies, and homes without air-conditioning during heatwaves (31°C, 36°C). Relative to 22°C, IFABP was elevated ~181 pg/mL after exposure to 31°C (P=0.07), and by ~378 pg/mL (P<0.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!