Production of bio-based chemicals from renewable bioresource is a key driver for moving towards sustainable industry. Furfurylamine is known as an important furfural-upgrading product in organic synthesis, as well as monolithic synthetic pharmaceuticals, fibers, additives and polymers. In one-pot manner, biomass was tandemly catalyzed to furfurylamine with sulfonated Sn-PL catalyst and recombinant ω-transaminase biocatalyst. Sn-PL (2.4 wt%) catalyzed bamboo shoot shell, corncob and rice straw (75.0 g/L) to 76.5-113.0 mM furfural at 44.7-58.5 % yield in γ-valerolactone-water (2:8, v:v) at 170 ℃. The obtained biomass slurries containing furfural were biotransformed to furfurylamine at high yield (0.39-0.42 g furfurylamine/g xylan in biomass) with ω-transaminase biocatalyst using isopropylamine (3.0 mol isopropylamine/mol furfural) as amine donor at 35 ℃. Such a chemoenzymatic one-pot process combined the advantages of both solid acids and whole-cells catalysts, which provided an efficient and sustainable approach for preparing an important bio-based furan chemical furfurylamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2021.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!