A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrogen-doped lignin-derived biochar with enriched loading of CeO nanoparticles for highly efficient and rapid phosphate capture. | LitMetric

Nitrogen-doped lignin-derived biochar with enriched loading of CeO nanoparticles for highly efficient and rapid phosphate capture.

Int J Biol Macromol

Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Published: July 2021

Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC. Consequently, an enhanced capture capacity for phosphate (196.85 mg g) as well as extremely rapid adsorption kinetics were achieved in a wide operating pH range (2-10). Interestingly, Ce@NLC exhibited a strong phosphate adsorption activity at even low-concentration phosphorus-containing water. The removal efficiency and final P concentration reached 99.87% and 2.59 μg P L within 1 min at the phosphate concentration of 2 mg P L. Experiments and characterization indicated that Ce(III) species plays a predominant role for the phosphate capture, and ligand exchange, together with electrostatic attraction, are the main adsorption mechanism. This work develops not only an efficient carbon-based adsorbent for phosphate capture, but also promotes the high-value application of industrial lignin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.05.109DOI Listing

Publication Analysis

Top Keywords

phosphate capture
16
lignin-derived biochar
8
ceo nanoparticles
8
phosphate
8
phosphate adsorption
8
adsorption activity
8
rapid adsorption
8
adsorption kinetics
8
modification strategy
8
ceiii species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!