Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes.

Stem Cell Reports

Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:

Published: September 2021

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452491PMC
http://dx.doi.org/10.1016/j.stemcr.2021.04.018DOI Listing

Publication Analysis

Top Keywords

telomere shortening
20
dmd hipsc-cms
8
telomere
6
dmd
6
shortening
5
increased tissue
4
tissue stiffness
4
stiffness triggers
4
triggers contractile
4
contractile dysfunction
4

Similar Publications

Background: Telomere length has been identified as a marker for biological aging and stressful body states. Mind-body interventions for stress reduction such as meditation, yoga, and pranayama have been previously tested to evaluate their efficacy in restricting telomere shortening.

Primary Study Objective: In this study, the effect of Sudarshan Kriya Yoga (SKY) is investigated for its influence on telomere length.

View Article and Find Full Text PDF

The Nuclear Condensates of ESE3/EHF Induce Cellular Senescence without the Associated Inflammatory Secretory Phenotype in Pancreatic Ductal Adenocarcinoma.

Cancer Lett

December 2024

Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China. Electronic address:

Senescent cells are in a stable state of cell cycle arrest, leading to a natural barrier to tumorigenesis. Senescent cells secrete a pool of molecules, including cytokines, chemokines, proteases, and growth factors, termed the senescence-associated secretory phenotype (SASP), paradoxically contributing to pro-tumorigenic processes. However, the mechanism for regulating senescence and SASP in tumor cells remains unclear.

View Article and Find Full Text PDF

Association of critically short telomeres with brain and blood markers of ageing and Alzheimer's disease in older adults.

Alzheimers Res Ther

December 2024

Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France.

Background: Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capacity and increased susceptibility to degenerative diseases such as Alzheimer's disease (AD). Telomere shortening has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility of developing AD in cognitively healthy older adults.

View Article and Find Full Text PDF

Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart.

View Article and Find Full Text PDF

Cellular senescence is a multifaceted process marked by irreversible cell cycle arrest in response to stressors such as DNA damage, oxidative stress, and telomere shortening, leading to significant cellular and mitochondrial alterations. These changes impact mesenchymal stem cell (MSC) function, affecting their differentiation, self-renewal, and regenerative abilities. Senescent MSCs adopt the senescence-associated secretory phenotype (SASP), characterized by the secretion of pro-inflammatory factors that propagate senescence to neighboring cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!