Saccadic eye movements cause large-scale transformations of the image falling on the retina. Rather than starting visual processing anew after each saccade, the visual system combines post-saccadic information with visual input from before the saccade. Crucially, the relative contribution of each source of information is weighted according to its precision, consistent with principles of optimal integration. We reasoned that, if pre-saccadic input is maintained in a resource-limited store, such as visual working memory, its precision will depend on the number of items stored, as well as their attentional priority. Observers estimated the color of stimuli that changed imperceptibly during a saccade, and we examined where reports fell on the continuum between pre- and post-saccadic values. Bias toward the post-saccadic color increased with the set size of the pre-saccadic display, consistent with an increased weighting of the post-saccadic input as precision of the pre-saccadic representation declined. In a second experiment, we investigated if transsaccadic memory resources are preferentially allocated to attentionally prioritized items. An arrow cue indicated one pre-saccadic item as more likely to be chosen for report. As predicted, valid cues increased response precision and biased responses toward the pre-saccadic color. We conclude that transsaccadic integration relies on a limited memory resource that is flexibly distributed between pre-saccadic stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142717 | PMC |
http://dx.doi.org/10.1167/jov.21.5.24 | DOI Listing |
Vision Res
January 2025
Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. Electronic address:
Bringing objects from peripheral locations to fovea via saccades facilitates their recognition. Human observers integrate pre- and post-saccadic information for recognition. This integration has only been investigated using instructed saccades to prescribed locations.
View Article and Find Full Text PDFWe perceive a stable, continuous world despite drastic changes of retinal images across saccades. However, while objects in daily life appear stable across saccades, stimuli around saccades can be grossly mislocalized. We address this puzzle with our recently proposed circuit model for perisaccadic receptive-field (RF) remapping in LIP and FEF.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Department of Psychology and Center for Neural Science, New York University, New York, NY 10012.
The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to.
View Article and Find Full Text PDFElife
June 2024
Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Autism spectrum disorder (ASD) presents a range of challenges, including heightened sensory sensitivities. Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms, which predict the sensory outcomes of self-generated actions, such as eye movements. Efference copies play a vital role in maintaining visual and motor stability.
View Article and Find Full Text PDFJ Vis
August 2023
Department of Psychology, University of Tennessee, Knoxville, TN, USA.
With each saccade, visual information is disrupted, and the visual system is tasked with establishing object correspondence between the presaccadic and postsaccadic representations of the saccade target. There is substantial evidence that the visual system consults spatiotemporal continuity when determining object correspondence across saccades. The evidence for surface feature continuity, however, is mixed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!