Heterogenous nanomaterials containing various inorganic phases have far-reaching impacts both from the physical phenomena they reveal and the technologies they enable. While the variety and impact of these materials has been demonstrated in many reports, there is critical ambiguity in the factors that lead to major bifurcations in developing these heterostructures, for example, the formation of either mixed metal semiconductors or segregated metal-semiconductor phases. Here, we compare outcomes of independently introducing 5 different metal cations (Au, Ag, Hg, Pd, and Pt) to antifluorite copper selenide (CuSe) nanoparticles (diameter = 52 ± 5 nm). This suite of metal cations allowed us to control for and evaluate a variety of potentially competing intrinsic system parameters including metal cation size, valency, and reduction potential as well as lattice volume change, lattice formation energy, and lattice mismatch. Upon secondary metal addition, we determined that the transformation of a cubic CuSe lattice will occur via cation exchange reaction when the change in symmetry to the resulting metal selenide phase(s) preserves mutually orthogonal lattice vectors. However, if the new lattice symmetry would be disrupted further, metal deposition is the likely outcome of secondary metal cation addition, forming metal-semiconductor heterostructures. These results suggest a synthesis design rule that relies on an intrinsic property of the material, not the reaction pathway, and indicates that more such factors may be found in other particle and synthetic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c02765 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFJ Org Chem
January 2025
International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
We disclosed a new strategy for the synthesis of 1,2-amino alcohols enabled by visible light without the requirement of a photocatalyst and metal. Under light irradiation at 400 nm, the reaction of carbonyl derivatives and -arylamines proceeds via an electron-donor-acceptor (EDA) intermediate, obtaining diverse vicinal amino alcohols decorated with a two-electron-rich/-deficient aryl group.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!