Digital Loop-Mediated Isothermal Amplification-Based Absolute Methylation Quantification Revealed Hypermethylated DAPK1 in Cervical Cancer Patients.

Anal Chem

State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Published: June 2021

AI Article Synopsis

  • Aberrant methylation of genes is linked to various cancers, making accurate detection vital for diagnostics.
  • The new HEADLAMP method uses a methylation-sensitive enzyme to digitally quantify DNA methylation, achieving better sensitivity than conventional methods.
  • It successfully detected low levels of DAPK1 gene methylation in cervical cancer samples, suggesting its potential for epigenetic research and early disease diagnosis.

Article Abstract

The aberrant methylation of many genes has been reported to be associated with various carcinomas. Accurate detection of the methylation level could provide critical insights into the diagnostic analysis of diseases. Here, a sensitive HpaII-edited absolute droplet loop-mediated isothermal amplification (HEADLAMP) method based on methylation-sensitive restriction enzyme (MSRE) HpaII was developed for the digital quantification of DNA methylation. Methylation levels of the death-associated protein kinase 1 (DAPK1) gene that is associated with many cancers were studied using β-actin as an internal reference. DAPK1 (2.5 pM) with 0.01% methylation (250 aM) can be detected with the conventional HpaII-edited LAMP assay. Using HEADLAMP, as low as 1% methylation level can be distinguished with an estimated limit of detection of 5 aM (ca. 3 copies/μL). Moreover, HEADLAMP can detect low levels of methylated DAPK1 in normal L-02 cells, while the conventional assay cannot. Finally, HEADLAMP was applied to the detection of DAPK1 methylation in 20 clinical tissue samples, which revealed hypermethylated DAPK1 in cervical cancer patients. We envisage potential applications of this robust, specific, and sensitive HEADLAMP assay in epigenetic studies and early clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c01510DOI Listing

Publication Analysis

Top Keywords

loop-mediated isothermal
8
methylation
8
revealed hypermethylated
8
hypermethylated dapk1
8
dapk1 cervical
8
cervical cancer
8
cancer patients
8
methylation level
8
dapk1
6
headlamp
5

Similar Publications

Introduction: f. sp. (Fol) is one of the most devastating plant pathogenic fungi, the causal agent of root rot for tractylides macrocephala Koidz (AMK).

View Article and Find Full Text PDF

Early and accurate diagnosis of leprosy is important but remains a significant challenge till date. Loop-mediated isothermal amplification (LAMP) is an isothermal process for amplification of nucleic acids at constant temperature and has been used to develop field-friendly tests for many diseases. In the present study, we have described the development of a colorimetric LAMP assay targeting Mycobacterium leprae-specific 450 bp conserved region of the repeat sequences known as RLEP.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

The tomato leaf miner (TLM), Phthorimaea absoluta Meyrick, 1917 (Lepidoptera: Gelechiidae) is a destructive invasive insect that has expanded its global distribution. Rapid and accurate identification of invasive pests is essential to support subsequent management and devise control measures. To accurately diagnose P.

View Article and Find Full Text PDF

PathCrisp: an innovative molecular diagnostic tool for early detection of NDM-resistant infections.

Sci Rep

January 2025

CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.

Article Synopsis
  • The study focuses on developing a rapid and accurate molecular detection system, called the PathCrisp assay, to identify infections and antibiotic resistance directly from culture samples.
  • The PathCrisp assay uses a combination of loop-mediated isothermal amplification and CRISPR-based detection, showing high sensitivity and specificity, particularly in detecting the New Delhi metallo-beta-lactamase (NDM) gene in clinical samples.
  • This novel assay provides results in about 2 hours without the need for complex equipment or extensive DNA purification, aiming to improve antibiotic treatment decisions in various healthcare settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!