A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ligand-Conformer-Induced Formation of Zirconium-Organic Framework for Methane Storage and MTO Product Separation. | LitMetric

Ligand-Conformer-Induced Formation of Zirconium-Organic Framework for Methane Storage and MTO Product Separation.

Angew Chem Int Ed Engl

Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Published: July 2021

In pursuit of novel adsorbents with efficient adsorptive gas storage and separation capabilities remains highly desired and challenging. Although the documented zirconium-tricarboxylate-based metal-organic frameworks (MOFs) have displayed a variety of topologies encompassing underlying and geometry mismatch ones, the employed organic linkers are exclusively rigid and poorly presenting one type of conformation in the resultant structures. Herein, a used and semirigid tricarboxylate ligand of H TATAB was judiciously selected to isolate a zirconium-based spe-MOF after the preliminary discovery of srl-MOF. Single-crystal X-ray diffraction reveals that the fully deprotonated TATAB linker in spe-MOF exhibits two distinct conformers, concomitant with popular O and rare S symmetrical Zr molecular building blocks, generating an unprecedented (3,3,12,12)-c nondefault topology. Specifically, the spe-MOF exhibits structurally higher complexity, hierarchical micropores, open metal sites free and rich electronegative groups on the pore surfaces, leading to relatively high methane storage capacity without considering the missing-linker defects and efficient MTO product separation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202103525DOI Listing

Publication Analysis

Top Keywords

methane storage
8
mto product
8
product separation
8
spe-mof exhibits
8
ligand-conformer-induced formation
4
formation zirconium-organic
4
zirconium-organic framework
4
framework methane
4
storage mto
4
separation pursuit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!