Forward Black Liquor Acid Precipitation: Lignin Fractionation by Ultrafiltration.

Appl Biochem Biotechnol

Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, Minas Gerais, 38400-902, Brazil.

Published: October 2021

Lignin recovery from black liquor is an important task for producing valuable chemical products. Acidification processes are currently applied by pulp and paper industries for black liquor treatment, in which two main streams are produced: the precipitated lignin fraction and a lignin-lean black liquor. Membrane filtration is a suitable alternative for lignin recovery from black liquor, but studies on lignin-lean black liquor filtration are scarce. Here, we evaluated the ultrafiltration process for lignin recovery from the both fractions of black liquor acidification. The lignin-lean black liquor presented 22 wt% of total solids with 4.6 wt% of lignin. Lignin retention from the lignin-lean black liquor by the 5 kDa ultrafiltration membrane was equal to 85%, with reduction in total solid concentration from 219.8 to 68.1 g L. Due to the relatively high solid concentration in the lignin-lean black liquor, cake formation was the main fouling mechanism during ultrafiltrations. The precipitated lignin solution presented 4.8 wt% of total solids with equivalent lignin concentration (4.7 wt%). The used membrane was able to retain almost 100% of solids and lignin from the solution prepared from the precipitated lignin. All fouling mechanisms were responsible for flux decay in ultrafiltration of the precipitated lignin solution. Steady state fluxes for lignin-lean black liquor and precipitated lignin solution were 0.9 and 15.9 L h m, respectively. According to TGA analyses up to 800 °C, precipitated lignin and lignin-lean black liquor presented total mass losses of 63.5% and 44.3%, respectively. Also, the permeate samples presented lower mass losses than their respective feed samples. The ultrafiltration process reduced the average weight molar mass (M) of the precipitated lignin solution and lignin-lean black liquor from 1817 to 486 g moland from 2876 to 1095 g mol, respectively. Thus, the 5 kDa ultrafiltration membrane was efficient for lignin recovery from the lignin-lean black liquor, while membranes with lower cut-off should be proposed for lignin purification from the precipitated fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-021-03580-2DOI Listing

Publication Analysis

Top Keywords

black liquor
56
lignin-lean black
36
precipitated lignin
28
lignin solution
20
lignin
17
lignin recovery
16
liquor
14
black
13
lignin-lean
9
recovery black
8

Similar Publications

Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

In this study, the response surface methodology was first utilized to optimize the enzyme treatment conditions as reaction pH, temperature, time and enzyme dosage of 9.5, 45 °C, 94.5 min and 100 U/L.

View Article and Find Full Text PDF

Background: Meconium is thick black-green fetal intestinal content starting from the early first trimester of gestation. Unfortunately, if it is released into the amniotic cavity due to any cause, it can be associated with neonatal mortality and morbidity.

Objective: To identify the factors associated with meconium-stained amniotic fluid among mothers undergoing emergency cesarean section in specialized hospitals cross-sectional study in south central Ethiopia from August 1, 2022, to 30, October 2022.

View Article and Find Full Text PDF

The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation.

View Article and Find Full Text PDF

Factorial designs are accurate tools to pick up the most promising extremophiles for future biosurfactant production.

Sci Total Environ

January 2025

Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina. Electronic address:

In this study, five strains previously isolated from black liquor (BL) and vinasse (V) were tested to assess the most promising regarding its capacity of biosurfactant production. For that, four factorial designs of two factors at two levels (2) were run for each strain. Selected factors were the production time and the composition media, while the surface tension reduction and optical density were the responses variables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!