Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions.

Chem Asian J

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea.

Published: July 2021

In this study, we compared the responses of two different types of zwitterionic polymers (ZPs), polyvinylimidzole sulfobetaine (poly(SBVI)) and polymethacrylate sulfobetaine (poly(SBMA)) to Hofmeister anions. Although the anions of the two ZPs were the same as the sulfonate anions and only the types of their cations were different from each other, the aggregation behavior of each in the salt aqueous solution was remarkably different. Consequently, poly(SBVI) exhibited both salting-in and salting-out effects depending on the type and concentration of salt, while poly(SBMA) only exhibited the anti-polyelectrolyte effect. The results of this study provide a deeper understanding of the behavior of zwitterionic polymers in salt solutions and will greatly expand their applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202100502DOI Listing

Publication Analysis

Top Keywords

zwitterionic polymers
12
hofmeister anions
8
liquid-to-solid phase
4
phase transitions
4
transitions imidazolium-based
4
imidazolium-based zwitterionic
4
polymers induced
4
induced hofmeister
4
anions
4
anions study
4

Similar Publications

Application of partially zwitterionic poly(ionic liquid)s in humidity sensors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China. Electronic address:

Polyelectrolytes have shown promise as sensitive material for high-performance humidity sensors in recent years. How to obtain fast recovery and high sensitivity polyelectrolyte humidity sensors is a great challenge. A kind of poly(ionic liquid)s (PILs) humidity sensors modified by zwitterionic polymers (partially zwitterionic PILs, named PZPILs) were prepared in this work.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.

View Article and Find Full Text PDF

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!