Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15993 | DOI Listing |
Conserv Biol
December 2024
California Division, The Nature Conservancy, California, USA.
Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change.
View Article and Find Full Text PDFSci Rep
December 2024
MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory - CETEMARES, Av. do Porto de Pesca 30, Peniche, 2520-620, Portugal.
The management and creation of Marine Protected Areas (MPAs) is currently under great focus, with international organisations aiming to protect 30% of our oceans by 2030. The success of MPAs depends on a nuanced understanding of local ecological dynamics and threats, which can significantly influence ecosystem balance. Herbivory can be a stressor for foundation species, namely kelp forests, contributing to their decline in several regions of the globe.
View Article and Find Full Text PDFJ Environ Manage
December 2024
BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
Kelp forests are key temperate ecosystems that experience the combined effects of global and local stressors throughout their distribution range. Niche modelling projections identified NW Spain, a region influenced by an intense upwelling system, as one such potential refugium. However, the recent discovery that fish overgrazing has eradicated kelp forests from certain reefs calls into question the validity of these projections.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Hopkins Marine Station and Oceans Department, Stanford University, Pacific Grove, California, USA.
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014-2016 marine heatwave regime that occurred in the region.
View Article and Find Full Text PDFProc Biol Sci
December 2024
Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA 92182-4614, USA.
The potential for aquatic gastropods to display phenotypic plasticity in response to predator cues is well documented. However, long-term phenotypic responses to predator exposure are difficult to evaluate at large scales in the field. Thus, the extent to which comparatively dilute predator cues experienced by natural snail populations influence morphometric development and whether energetic costs associated with defensive morphology have allometric impacts on other life-history characteristics is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!