A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of multiscale porosity and pore interconnectivity on and degradation and biocompatibility of Fe-Mn-Cu scaffolds. | LitMetric

Iron (Fe) based scaffolds are promising candidates as degradable metallic scaffolds. High strength and ability to control the degradation with tailormade composition and porosity are specific advantages of these scaffolds. In this research work, iron-manganese-copper (Fe-Mn-Cu) based scaffolds, with multiscale porosity, are developed through a powder metallurgy route using naphthalene as a spacer material. The porosity in the scaffolds ranged from 42-76%, where the majority of the macro-pores (≥20 μm) form an interconnected channel network. XRD analysis confirms the presence of MRI compatible and antiferromagnetic austenite as a major phase in all the scaffolds. The developed scaffolds in this study have a minimum ultimate compressive strength of 7.21 MPa (for 30Naph), which lies within the range of the human cancellous bone UCS (2-12 MPa). The degradation rates of the scaffolds are determined from static immersion tests, where the scaffold with the highest porosity (76%) shows a highest degradation rate of 2.71 mmpy when immersed in Hank's balanced salt solution (HBSS) at 37 °C for 30 days. The increased degradation rate of the scaffolds has no cytotoxic effects on MG63 cells as studied by alamar blue assay and live/dead imaging. When implanted in a rabbit femur, the scaffold with higher porosity showed enhanced osteogenesis, as evident through micro-CT and histological analysis. It is hypothesized that the presence of multiscale porosity with a high degree of interconnectivity facilitated better bone regeneration within and around the Fe-Mn-Cu scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00641jDOI Listing

Publication Analysis

Top Keywords

multiscale porosity
12
scaffolds
11
fe-mn-cu scaffolds
8
based scaffolds
8
degradation rate
8
porosity
7
degradation
5
effects multiscale
4
porosity pore
4
pore interconnectivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!