A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smart pH-Modulated Two-Way Photoswitch Based on a Polymer-Modified Single Nanochannel. | LitMetric

Smart pH-Modulated Two-Way Photoswitch Based on a Polymer-Modified Single Nanochannel.

ACS Appl Mater Interfaces

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.

Published: June 2021

In this article, we have demonstrated a smart pH-modulated two-way photoswitch that can reversibly switch ion transport under alternating light exposure over a wide pH range. This photoswitch was prepared by functionalizing the interior of a single conical glass nanochannel with a poly-spiropyran-linked methacrylate (P-SPMA) polymer through surface-initiated atom transfer radical polymerization. The P-SPMA polymer brushes comprise functional groups that are responsive to light and pH, which can cause configuration and charge changes to affect the properties of the nanochannel wall. The SPMA polymer-modified nanochannel not only reversibly controlled ion transport under alternating light irradiation but also efficiently and flexibly regulated the direction and extent of the ion transport based on the pH. This two-way photoswitch exhibits the considerable potential of photoresponsive polymers for the advancement of "intelligent" bionic nanochannel devices for ion screening and optical sensing in various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c01975DOI Listing

Publication Analysis

Top Keywords

two-way photoswitch
12
ion transport
12
smart ph-modulated
8
ph-modulated two-way
8
transport alternating
8
alternating light
8
p-spma polymer
8
nanochannel
5
photoswitch
4
photoswitch based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!