Exploration of Interactions Between Potential COVID-19 Antiviral Treatments and the Pore of the hERG Potassium Channel-A Drug Antitarget.

Front Cardiovasc Med

School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.

Published: May 2021

In the absence of SARS-CoV-2 specific antiviral treatments, various repurposed pharmaceutical approaches are under investigation for the treatment of COVID-19. Antiviral drugs considered for this condition include atazanavir, remdesivir, lopinavir-ritonavir, and favipiravir. Whilst the combination of lopinavir and ritonavir has been previously linked to prolongation of the QT interval on the ECG and risk of arrhythmia, less is known in this regard about atazanavir, remdesivir, and favipiravir. Unwanted abnormalities of drug-induced QT prolongation by diverse drugs are commonly mediated by a single cardiac anti-target, the hERG potassium channel. This computational modeling study was undertaken in order to explore the ability of these five drugs to interact with known determinants of drug binding to the hERG channel pore. Atazanavir, remdesivir, ritonavir, lopinavir and favipiravir were docked to models of the pore domain of hERG, derived from cryo-EM structures of hERG and the closely related EAG channel. Atazanavir was readily accommodated in the open hERG channel pore in proximity to the S6 Y652 and F656 residues, consistent with published experimental data implicating these aromatic residues in atazanavir binding to the channel. Lopinavir, ritonavir, and remdesivir were also accommodated in the open channel, making contacts in a model-dependent fashion with S6 aromatic residues and with residues at the base of the selectivity filter/pore helix. The ability of remdesivir (at 30 μM) to inhibit the channel was confirmed using patch-clamp recording. None of these four drugs could be accommodated in the closed channel structure. Favipiravir, a much smaller molecule, was able to fit within the closed channel and could adopt multiple binding poses in the open channel, but with few simultaneous interactions with key binding residues. Only favipiravir and remdesivir showed the potential to interact with lateral pockets below the selectivity filter of the channel. All the antiviral drugs studied here can, in principle, interact with components of the hERG potassium channel canonical binding site, but are likely to differ in their ability to access lateral binding pockets. Favipiravir's small size and relatively paucity of simultaneous interactions may confer reduced hERG liability compared to the other drugs. Experimental structure-function studies are now warranted to validate these observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129016PMC
http://dx.doi.org/10.3389/fcvm.2021.645172DOI Listing

Publication Analysis

Top Keywords

herg potassium
12
atazanavir remdesivir
12
channel
12
covid-19 antiviral
8
antiviral treatments
8
herg
8
antiviral drugs
8
lopinavir ritonavir
8
potassium channel
8
herg channel
8

Similar Publications

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform

December 2024

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.

View Article and Find Full Text PDF

Nitazene opioids and the heart: Identification of a cardiac ion channel target for illicit nitazene opioids.

J Mol Cell Cardiol Plus

December 2024

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.

The growing use of nitazene synthetic opioids heralds a new phase of the opioid crisis. However, limited information exists on the toxic effects of these drugs, aside from a propensity for respiratory depression. With restricted research availability of nitazenes, we used machine-learning-based tools to evaluate five nitazene compounds' interaction potential with the hERG potassium channel, a key drug antitarget in the heart.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).

View Article and Find Full Text PDF

Stereoselective block of the hERG potassium channel by the Class Ia antiarrhythmic drug disopyramide.

Cell Mol Life Sci

November 2024

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.

Article Synopsis
  • Potassium channels from the human hERG gene are affected by various drugs, and this study specifically investigates the effects of chiral disopyramide, a Class Ia antiarrhythmic, on hERG currents in HEK 293 cells.* -
  • The findings show that the S(+) enantiomer of disopyramide is more potent at inhibiting hERG current compared to the R(-) form, with IC values of 3.9 µM and 12.9 µM respectively, and certain mutations in hERG alter these effects.* -
  • Molecular simulations indicate that the S(+) form binds more effectively to specific residues in the hERG channel, while the R(-)
View Article and Find Full Text PDF

Development of an efficient NUPR1 inhibitor with anticancer activity.

Sci Rep

November 2024

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.

Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!