Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatial and mathematical abilities are strongly associated. Here, we analysed data from 17,648 children, aged 6-8 years, who performed 7 weeks of mathematical training together with randomly assigned spatial cognitive training with tasks demanding more spatial manipulation (mental rotation or tangram), maintenance of spatial information (a visuospatial working memory task) or spatial, non-verbal reasoning. We found that the type of cognitive training children performed had a significant impact on mathematical learning, with training of visuospatial working memory and reasoning being the most effective. This large, community-based study shows that spatial cognitive training can result in transfer to academic abilities, and that reasoning ability and maintenance of spatial information is relevant for mathematics learning in young children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41562-021-01118-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!