Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean-atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m day, averaged over the sampling period. The CO transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean-atmosphere fluxes. The ocean-atmosphere CO, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean-atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137957PMC
http://dx.doi.org/10.1038/s41598-021-89985-9DOI Listing

Publication Analysis

Top Keywords

heat fluxes
12
cold waters
8
ocean-atmosphere fluxes
8
fluxes
6
wce
6
heat
5
oceanic eddy-induced
4
eddy-induced modifications
4
modifications air-sea
4
air-sea heat
4

Similar Publications

The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.

View Article and Find Full Text PDF

Accurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth's energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations.

View Article and Find Full Text PDF

The global seasonal cycle of energy in Earth's climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging.

View Article and Find Full Text PDF

This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.

View Article and Find Full Text PDF

Using eddy covariance data to detect nuclear reactor operational status.

J Environ Manage

December 2024

Nuclear and Engineering Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Monitoring nuclear reactor operations is vital for nuclear safeguards as it ensures that reactors are in compliance with international legal agreements. Validating nuclear facilities and activities, including potential clandestine activities, is currently accomplished by using remotely sensed data from satellites and aircrafts and on-site sampling. However, these techniques are temporally-limited as sampling and interpretation of environmental releases frequently involve labor-intensive, on-site collections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!