There is an unmet need to overcome nongenetic therapy-resistance to improve outcomes in AML, especially post-myeloproliferative neoplasm (MPN) secondary (s) AML. Studies presented describe effects of genetic knockout, degradation or small molecule targeted-inhibition of GFI1/LSD1 on active enhancers, altering gene-expressions and inducing differentiation and lethality in AML and (MPN) sAML cells. A protein domain-focused CRISPR screen in LSD1 (KDM1A) inhibitor (i) treated AML cells, identified BRD4, MOZ, HDAC3 and DOT1L among the codependencies. Our findings demonstrate that co-targeting LSD1 and one of these co-dependencies exerted synergistic in vitro lethality in AML and post-MPN sAML cells. Co-treatment with LSD1i and the JAKi ruxolitinib was also synergistically lethal against post-MPN sAML cells. LSD1i pre-treatment induced GFI1, PU.1 and CEBPα but depleted c-Myc, overcoming nongenetic resistance to ruxolitinib, or to BETi in post-MPN sAML cells. Co-treatment with LSD1i and BETi or ruxolitinib exerted superior in vivo efficacy against post-MPN sAML cells. These findings highlight LSD1i-based combinations that merit testing for clinical efficacy, especially to overcome nongenetic therapy-resistance in AML and post-MPN sAML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138012 | PMC |
http://dx.doi.org/10.1038/s41408-021-00487-3 | DOI Listing |
Nat Commun
January 2025
Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Myeloid malignancies are heterogenous disorders characterized by distinct molecular drivers but share convergence of oncogenic signaling pathways and propagation by ripe pro-inflammatory niches. Here, we establish a comprehensive transcriptional atlas across the spectrum of myeloproliferative neoplasms (MPN) and secondary acute myeloid leukemia (sAML) through RNA-sequencing of 158 primary samples encompassing CD34+ hematopoietic stem/progenitor cells and CD14+ monocytes. Supported by mass cytometry (CyTOF) profiling, we reveal aberrant networks of PI3K/AKT/mTOR signalling and NFκB-mediated hyper-inflammation.
View Article and Find Full Text PDFBlood
November 2024
MD Anderson Cancer Center, Houston, Texas, United States.
Int J Mol Sci
June 2024
Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania.
Res Sq
June 2024
Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Mutations in RNA splicing factor genes including , , and have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1) to change various gene isoform patterns to support MDS cells survival and proliferation.
View Article and Find Full Text PDFOncoimmunology
March 2024
Institute of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany.
Genetic aberrations and immune escape are fundamental in MDS and CMML initiation and progression to sAML. Therefore, quantitative and spatial immune cell organization, expression of immune checkpoints (ICP), classical human leukocyte antigen class I (HLA-I) and the non-classical HLA-Ib antigens were analyzed in 274 neoplastic and 50 non-neoplastic bone marrow (BM) biopsies using conventional and multiplex immunohistochemistry and correlated to publicly available dataset. Higher numbers of tissue infiltrating lymphocytes (TILs) were found in MDS/CMML (8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!