Infrared thermography (IRT) has been gaining in popularity in clinical and scientific research due to the increasing availability of affordable infrared cameras. This study aims to determine the similarity of measurement performance between three models of IRT camera during assessment of skin temperature before and after physical exercise. Three models of FLIR thermographic cameras (E60bx, Flir-One Pro LT, and C2) were tested. Thermal images were taken of the foot sole, anterior leg, and anterior thigh from 12 well-trained men, before and after a 30-min run on a treadmill. Image files were blinded and processed by three evaluators to extract the mean, maximum, and standard deviation of skin temperature of the region of interest. Time for data processing and rate of perceived effort was also recorded. Data processing was slower on the E60bx (CI95% E60 vs C2 [0.2, 2.6 min], p = 0.02 and ES = 0.6); vs. Flir-One [0.0, 3.4 min], p = 0.03 and ES = 0.6) and was associated with lower effort perception (E60 3.0 ± 0.1 vs. Flir-One 5.6 ± 0.2 vs C2 7.0 ± 0.2 points; p < 0.001 and ES > 0.8). The C2 and Flir-One cameras underestimated the temperature compared with the E60. In general, measuring mean temperature provided higher camera and examiner intra-class correlations than maximum and standard deviation, especially before exercise. Moreover, post exercise mean skin temperatures provided the most consistent values across cameras and evaluators. We recommend the use of mean temperature and caution when using more than one camera model in a study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2021.102913DOI Listing

Publication Analysis

Top Keywords

skin temperature
12
camera model
8
assessment skin
8
physical exercise
8
three models
8
maximum standard
8
standard deviation
8
data processing
8
temperature
6
influence infrared
4

Similar Publications

In this study, the interaction of waste snake skin (Periostracum serpentis), a keratin-based biowaste composite material, with uranyl ions, the predominant form of uranium in aqueous solutions, was investigated to determine whether it could be used as an adsorbent. SEM, FTIR, BET and EDX analyses were performed to elucidate the material's surface and structural properties. The effects of the amount of adsorbent, uranyl ion concentration, pH, temperature, and adsorption time were investigated to optimize uranium removal with this material.

View Article and Find Full Text PDF

Effects of cold-water immersion on health and wellbeing: A systematic review and meta-analysis.

PLoS One

January 2025

Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia.

Background: Cold-water immersion (CWI) has gained popularity as a health and wellbeing intervention among the general population.

Objective: This systematic review and meta-analysis aimed to evaluate the psychological, cognitive, and physiological effects of CWI in healthy adults.

Methods: Electronic databases were searched for randomized trials involving healthy adults aged ≥ 18 years undergoing acute or long-term CWI exposure via cold shower, ice bath, or plunge with water temperature ≤15°C for at least 30 seconds.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Botulinum toxin-A (BTX-A) is widely used for aesthetic purposes and is recognized for its vasomotor actions. However, new medical applications have emerged. This study aims to describe the effect of BTX-A on human skin perfusion, particularly vessel diameter, blood flow, and blood vessel density in regions with known low vessel density.

View Article and Find Full Text PDF

A biomass-derived multifunctional conductive coating with outstanding electromagnetic shielding and photothermal conversion properties for integrated wearable intelligent textiles and skin bioelectronics.

Mater Horiz

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

Intelligent electronic textiles have important application value in the field of wearable electronics due to their unique structure, flexibility, and breathability. However, the currently reported electronic textiles are still challenged by issues such as their biocompatibility, photothermal conversion, and electromagnetic wave contamination. Herein, a multifunctional biomass-based conductive coating was developed using natural carboxymethyl starch (CMS), dopamine and polypyrrole (PPy) and then further employed for constructing multifunctional intelligent electronic textiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!