Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ons/opab163 | DOI Listing |
Exp Dermatol
January 2025
Department of Dermatology, Ajou University School of Medicine; Suwon, Suwon, Korea.
Senescent melanocytes have been suggested to play a role in the development of ageing-associated pigmentary changes and skin ageing. Here, we assessed the senolytic capacity of recognised senolytic chemicals and natural compounds in UV-irradiated senescent melanocytes. Among the tested agents, only ABT-737 and ABT-263 showed a significant reduction in the number of SA-β-Gal-positive senescent melanocytes and in the expressions of p16 and p21.
View Article and Find Full Text PDFThe extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 10-10 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.
View Article and Find Full Text PDFArch Dis Child
January 2025
University Surgery Unit, University of Southampton Faculty of Medicine, Southampton, UK.
Phys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFEnviron Int
January 2025
ICBE-EMF, International EMF Scientist Appeal, Electromagnetic Safety Alliance, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!