Climate change has an important impact on the phenological phases of the grapevine. The consequences are directly reflected in quantitative and qualitative characteristics of the grapes. In fact, there is a decrease in the skin-to-pulp ratio (therefore a decrease in production with an excess of alcohol) and a consequent reduction in the aromatic potential of white grapes (lowering of the quality of musts). Volatile tioles are important aromatic compounds found in various foods and drinks; in particular they contribute to forming the aroma of some types of white wines as they are characterized by extremely low perception thresholds. This work aimed to evaluate the effects of water stress on ecophysiology, technological maturity and on the thiol precursors of Vitis vinifera L. cv. Sauvignon Blanc vineyards in the Tuscan region (Italy) during two seasons. To this end, three treatments were established: WW (well watered), MW (medium watered), and WS (water stress with no irrigation). During the seasons, measurements were made of single-leaf gas exchange, pre-dawn and leaf midday water potential, leaf temperature, chlorophyll fluorescence, as well chlorophyll content. In addition, the parameters of plant yield, technological maturity (° Brix, acidity, pH and berries weight) and the precursors of 3-Mercaptohexanol (3MH) were analyzed: 3-S-cysteinylhexan-1-ol (Cys-3MH) and 3-S-glutathionylhexan-1-ol (GSH-3MH). Well watered treatments (WW) showed less negative water potential, a higher rate of photosynthesis, of stomatal conductance, a lower leaf temperature (°C). Furthermore, WW showed higher levels of precursors accumulation (Cys-3MH and GSH-3MH) than the other treatments during two seasons. Technological analyses (° Brix and acidity) showed significant differences between WW and WS treatments. The lower berry weight was found in the WS treatment. Finally as a result of climate change, precision irrigation has proved to be a good technique to rebalance the gap between technological and aromatic maturity in Sauvignon Blanc grapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.04.029 | DOI Listing |
Food Chem
December 2024
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:
To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China. Electronic address:
As a well-commercialized and utilized non-Saccharomyces yeast, Torulaspora delbruineckii is gaining increasing relevance in the winemaking industry. However, its ability to produce distinctive aromas in wine has been inconsistently reported in the literature. This study aimed to evaluate the fermentation performance and aroma properties of T.
View Article and Find Full Text PDFFood Res Int
December 2024
College of Enology, Northwest A&F University, Yangling 712100, China; National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling 712100, China; Shaanxi Key Laboratory for Viti-Viniculture, Yangling 712100, China. Electronic address:
Oak-barrel fermentation is used in white wine production to enhance aroma and flavor complexity. However, the dynamics of microbial communities and their impact on the formation of flavor compounds during barrel fermentation remain unclear. This study investigated the changes in dissolved oxygen concentrations, microbial communities, and volatile compounds during Sauvignon Blanc wine fermentation in various oak barrels (new and two-year-old Francois Freres and new Taransaud) and stainless-steel tanks.
View Article and Find Full Text PDFFood Chem X
December 2024
Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin - Jules Guyot, F-21000 Dijon, France.
Microorganisms
August 2024
Biotecnología Enológica, Department Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
Controlling the microorganisms involved in alcoholic fermentation during wine production can be achieved by adding a small quantity of spontaneously fermenting must to freshly crushed grapes, a technique known as (PdC). This method not only serves as an inoculation starter but also enhances the microbial footprint unique to each wine region. Recent studies have confirmed that wines inoculated with PdC exhibit efficient fermentation kinetics comparable to those inoculated with commercial strains of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!