Effects of elevated CO treatment of Populus davidiana × P. bolleana on growth and detoxifying enzymes in gypsy moth, Lymantria dispar.

Comp Biochem Physiol C Toxicol Pharmacol

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China. Electronic address:

Published: October 2021

To date, elevated CO concentrations in the environment caused by various human activities influence diverse areas of life, including the interactions between insects and plants. The Lymantria dispar is one of the most severely destructive pests, which further could inflict ecological and economical damage. In this experiment, one-year-old Populus davidiana × P. bolleana plants were grown in CO-enhanced environments for one month at three different CO concentrations: 397 ppm (atmospheric CO concentration), 550 ppm and 750 ppm (two predicted elevated CO concentrations). The 3rd instar L. dispar larvae then fed on the treated poplar seedlings covered in a nylon bag. The L. dispar larvae fed on poplar seedling treated for 96 h showed the highest growth rate at all CO concentrations. Enzymatic activity of treated larvae showed the highest GST and P450 activity at 750 ppm CO. The relative expressions of seven CYP and ten GST genes in L. dispar larvae were analyzed quantitatively using real-time RT-PCR, which the results were expressed variably. Compared to 397 ppm CO, the expression of CYP4L23 was down-regulated, while the expressions of other CYP genes were up-regulated. Meanwhile, only GSTo1 gene showed down-regulated at 48 h and 96 h in 750 ppm CO treatment, while GST expression level for the other nine GST genes showed up-regulated at 48 h and 72 h. These results offer the insight into plant-insect interactions under global climate change and furthermore will provide essential information for strategic pest control based on biochemical and molecular levels changes in gypsy moths.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2021.109079DOI Listing

Publication Analysis

Top Keywords

dispar larvae
12
populus davidiana
8
davidiana bolleana
8
lymantria dispar
8
elevated concentrations
8
larvae fed
8
expressions cyp
8
gst genes
8
genes up-regulated
8
dispar
5

Similar Publications

RNAi-mediated knockdown of HcCAT2 depresses the adaptive capacity of Hyphantria cunea larvae to cytisine and coumarin.

Int J Biol Macromol

January 2025

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

The Pb tolerance initiated by LdZIP8 in Lymantria dispar larvae: An effective defense against heavy metal stress.

J Hazard Mater

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg.

View Article and Find Full Text PDF

AMPK (AMP-activated protein kinase) is a crucial cellular energy sensor across all eukaryotic species. Its multiple roles in maintaining energy homeostasis, regulating cellular metabolic processes have been widely investigated in mammals. In contrast, the function of AMPK in insects has been less reported.

View Article and Find Full Text PDF

Deworming for pregnant women using a single dose of albendazole or mebendazole is recommended by the WHO in areas where the baseline prevalence of hookworm and/or trichuriasis is >20%. However, other helminths and protozoa infecting pregnant women are not affected by these drugs and dosages. To assess the prevalence and diversity of intestinal helminth and protozoan infections, we analyzed stool samples from pregnant women recently enrolled into a birth cohort, along a rural-urban gradient in northern coastal Ecuador from 2019 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!