Discovery of N-(6-(5-fluoro-2-(piperidin-1-yl)phenyl)pyridazin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)methanesulfonamide as a brain-permeable and metabolically stable kynurenine monooxygenase inhibitor.

Bioorg Med Chem Lett

Drug Research Division, Sumitomo Dainippon Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan. Electronic address:

Published: July 2021

Kynurenine monooxygenase (KMO) is expected to be a good drug target to treat Huntington's disease (HD). This study presents the structure-activity relationship of pyridazine derivatives to find novel KMO inhibitors. The most promising compound 14 resolved the problematic issues of lead compound 1, i.e., metabolic instability and reactive metabolite-derived side-effects. Compound 14 exhibited high brain permeability and a long-lasting pharmacokinetics profile in monkeys, and neuroprotective kynurenic acid was increased by a single administration of 14 in R6/2 mouse brain. These results demonstrated 14 may be a potential drug candidate to treat HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.128115DOI Listing

Publication Analysis

Top Keywords

kynurenine monooxygenase
8
discovery n-6-5-fluoro-2-piperidin-1-ylphenylpyridazin-3-yl-1-tetrahydro-2h-pyran-4-ylmethanesulfonamide
4
n-6-5-fluoro-2-piperidin-1-ylphenylpyridazin-3-yl-1-tetrahydro-2h-pyran-4-ylmethanesulfonamide brain-permeable
4
brain-permeable metabolically
4
metabolically stable
4
stable kynurenine
4
monooxygenase inhibitor
4
inhibitor kynurenine
4
monooxygenase kmo
4
kmo expected
4

Similar Publications

Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

3-Hydroxyanthranic acid inhibits growth of oral squamous carcinoma cells through growth arrest and DNA damage inducible alpha.

Transl Oncol

February 2025

Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China. Electronic address:

Objectives: The specific role of 3-hydroxyanthranilic acid(3-HAA) in oral squamous cell carcinoma (OSCC) remains unclear. This study investigated the roles of 3-HAA in OSCC and the underlying mechanism.

Materials And Methods: The effects of 3-HAA on OSCC were examined using CCK-8, colony formation, EdU incorporation assays and xenograft mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!