Novel Fe(III)-Polybasic acid coordination polymer nanoparticles with targeted retention for photothermal and chemodynamic therapy of tumor.

Eur J Pharm Biopharm

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou 450001, China. Electronic address:

Published: August 2021

The development of Fe-coordination polymer-based nanoparticles, with safe and high anti-tumor effects, for the treatment of tumor is facing challenges such as limited resources and poor targeting. In this study, we prepared Fe-polyhydroxy coordination polymer nanoparticles (TA-Fe@MNPs), based on tartaric acid (TA)-Fe(III) coordination polymer as the new photothermal agent, mannose (M) as the target, and bovine serum albumin (BSA) and polyethyleneimine (PEI) as the carrier materials, and investigated them for targeting the multifunctional therapy of tumors. The TA-Fe@MNPs synthesized via a simple coordination of Fe with TA, bovine serum albumin, and polyethyleneimine under ambient conditions exhibited an appropriate size (~125 nm), electrically neutral surfaces, good biocompatibility, and low normal cell toxicity. The TA-Fe@MNPs are the first to exhibit a remarkable photothermal performance. They also showed a pH-sensitive Fenton-like response that was further enhanced via glutathione response. Interestingly, after a single injection, the TA-Fe@MNPs could be retained at the tumor site for 36 h with an effective photothermal dose, which was attributed to the reduced protein adsorption and slow elimination in tumor cells with the aid of M modification and carrier materials, while that for the TA-Fe@NPs did so for only 2 h. Tumor ablation was demonstrated by in vivo photothermal and chemokinetic therapy using TA-Fe@MNPs, and their safety was evident from the weight changes and blood parameters. These results indicated that the TA-Fe@MNPs, as new photothermal and CDT agents, have the potential to be used in clinical tumor therapy nanoplatforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2021.05.012DOI Listing

Publication Analysis

Top Keywords

coordination polymer
12
polymer nanoparticles
8
bovine serum
8
serum albumin
8
carrier materials
8
photothermal
6
tumor
6
ta-fe@mnps
6
novel feiii-polybasic
4
feiii-polybasic acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!