Autism spectrum disorder (ASD) is a severe life-long neuropsychiatric disorder. Alterations and imbalance of several neurochemical systems may be involved in ASD pathophysiology, of them, serotonergic neurotransmission dysfunction and deficiency may underlie behavioral abnormalities associated with ASD. However, the functional importance of serotonergic receptors, particularly 5HT7 receptors in ASD pathology remains poorly defined. Serotonin receptor subtype 7 (5-HT7R) plays a direct regulatory role in the development and also for the mature function of the brain, therefore, further studies are necessary to elucidate the role of these receptors in the etiology of autism. To address this issue, we combined here behavioral, electrophysiological methods to further characterize the contribution of 5-HT7Rs in the prenatal valproic acid (VPA) exposure-induced impairment in synaptic plasticity and their impact on the associated behavioral changes. This may help to unravel the underlying cellular mechanisms involved in ASD and can lead to new treatment and/or prevention therapies based on the role of the serotonergic system for autism. Findings revealed that compared to control, autistic-like offspring showed increased anxiety-like behavior, reduced social interaction, decreased locomotor activity, and impaired identification of the novel object. However, administration of 5-HT7Rs agonist, LP-211, for 7 consecutive days before testing from postnatal day 21 to 27 reversed all behavioral deficits induced by prenatal exposure to VPA in offspring. Also, both short-term depression and long-term potentiation were impaired in the autistic-like pups, but activation of 5-HT7Rs rescued the LTP impairment in the autistic-like group so that there was no significant difference between the two groups. Blockade of 5-HT7Rs caused LTP impairment following HFS in the autistic-like group. Besides, there was a significant difference in LTD induction following SB-269970 application between the control and the autistic-like groups measured at first 10 min following TPS. Moreover, both the number and the size of retrograde fast blue-labelled neurons in the raphe nuclei were reduced. Overall, these results provide for the first time, as far as we know, functional evidence for the restorative role of 5-HT7Rs activation against prenatal VPA exposure induced behavioral deficits and hippocampal synaptic plasticity impairment. Therefore, these receptors could be a potential and promising pharmacotherapy target for the treatment of autism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2021.107462 | DOI Listing |
J Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFeNeuro
January 2025
University of Rochester Medical Center, Department of Neuroscience,
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China. Electronic address:
Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!