A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of beta-isopropylmalate dehydrogenase in lipid biosynthesis of the oleaginous fungus Mortierella alpina. | LitMetric

Role of beta-isopropylmalate dehydrogenase in lipid biosynthesis of the oleaginous fungus Mortierella alpina.

Fungal Genet Biol

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China.

Published: July 2021

Branched-chain amino acids (BCAAs) play an important role in lipid metabolism by serving as signal molecules as well as a potential acetyl-CoA source. Our previous study found that in the oleaginous fungus Mucor circinelloides, beta-isopropylmalate dehydrogenase (IPMDH), an important enzyme participating in the key BCAA leucine biosynthesis, was differentially expressed during lipid accumulation phase and has a positive role on lipogenesis. To further analyze its effects on lipogenesis in another oleaginous fungus Mortierella alpina, the IPMDH-encoding gene MaLeuB was homologously expressed. It was found that the total fatty acid content in the recombinant strain was increased by 20.2% compared with the control strain, which correlated with a 4-fold increase in the MaLeuB transcriptional level. Intracellular metabolites analysis revealed significant changes in amino acid biosynthesis and metabolism, tricarboxylic acid cycle and butanoate metabolism; specifically, leucine and isoleucine levels were upregulated by 6.4-fold and 2.2-fold, respectively. Our genetic engineering approach and metabolomics study demonstrated that MaLeuB is involved in fatty acid metabolism in M. alpina by affecting BCAAs metabolism, and this newly discovered role of IPMDH provides a potential bypass route to increase lipogenesis in oleaginous fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2021.103572DOI Listing

Publication Analysis

Top Keywords

oleaginous fungus
12
beta-isopropylmalate dehydrogenase
8
fungus mortierella
8
mortierella alpina
8
lipogenesis oleaginous
8
fatty acid
8
metabolism
5
role
4
role beta-isopropylmalate
4
dehydrogenase lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!