The global environmental pollution by micro- and macro-plastics reveals the consequences of an extensive use of recalcitrant plastic products together with inappropriate waste management practices that fail to sufficiently recycle the broad types of conventional plastic waste. Biobased and biodegradable plastics are experiencing an uprising as their properties offer alternative waste management solutions for a more circular material economy. However, although the production of such bioplastics has advanced on scale, the end-of-life (EOL) (bio)technologies to promote circularity are lacking behind. While composting and biogas plants are the only managed EOL options today, advanced biotechnological recycling technologies for biodegradable bioplastics are still in an embryonic stage. Thus, developing efficient biotechnologies capable of transforming bioplastic waste into high-value chemical building blocks or into the constituents of the original polymer offers promising routes towards life-cycle-engineered products. This review aims at providing a comprehensive state-of-the-art overview of microbial-based processes involved in the complete lifecycle of bioplastics. The current trends in the bioplastic market, the beginning and EOL scenarios of bioplastics, and a critical discussion on the key factors and mechanisms governing microbial degradation are systematically presented. Also, a critical evaluation of terminology and international standards to quantify polymer biodegradability is provided together with the latest biotechnological recycling strategies, including the use of different pre-treatments for (bio)plastic waste. Finally, the challenges and future perspectives for the development of life-cycle-engineered biobased and biodegradable plastic products are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2021.107772DOI Listing

Publication Analysis

Top Keywords

biodegradable bioplastics
8
life-cycle-engineered products
8
plastic products
8
waste management
8
biobased biodegradable
8
biotechnological recycling
8
bioplastic waste
8
bioplastics
5
waste
5
inspired nature
4

Similar Publications

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Statoliths function in gravity perception in plants: yes, no, yes!

Planta

January 2025

Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.

The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!