In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing-or allowing-meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408453 | PMC |
http://dx.doi.org/10.1093/plcell/koab140 | DOI Listing |
BMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFProtoplasma
January 2025
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México Apartado Postal, 70-233, 04510, Mexico City, Mexico.
Secretory canals are distributed among seed plants, and their diversity is concentrated in many families of angiosperms, while other internal secretory structures such as secretory cavities have been identified only in Rutaceae, Myrtaceae, and Asteraceae. Identifying and recognizing these two types of secretory structures has been complicated, mainly due to their structural similarities. In this study, the ontogeny of canals and secretory cavities in two species of Asteraceae are described and compared, to understand the structural differences between them and allow the establishment of more appropriate homology hypotheses.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland.
The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!