MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418433PMC
http://dx.doi.org/10.1093/plphys/kiab235DOI Listing

Publication Analysis

Top Keywords

repressor complex
8
mip1a function
8
early flowering
8
flowering
5
mip1a
5
microprotein repressor
4
complex
4
complex shoot
4
shoot meristem
4
meristem controls
4

Similar Publications

Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities.

Int J Mol Sci

January 2025

Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea.

The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer.

View Article and Find Full Text PDF

Inactivation of TACC2 epigenetically represses CDKN1A and confers sensitivity to CDK inhibitors.

Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Electronic address:

Background: The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies.

Methods: Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality.

View Article and Find Full Text PDF

CBX2 promotes cervical cancer cell proliferation and resistance to DNA-damaging treatment via maintaining cancer stemness.

J Biol Chem

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:

Article Synopsis
  • Cervical cancer ranks as the fourth most common cancer among women and is a leading cause of cancer-related deaths due to advanced stages and treatment resistance.
  • Researchers investigated the role of an epigenetic regulator, polycomb repressor complex 1 (PRC1), specifically focusing on the subunit CBX2, which is found to be increased in cervical cancer and linked to poor patient outcomes.
  • The study revealed that CBX2 enhances cancer cell growth, provides resistance to treatments like cisplatin and radiation, and helps maintain cancer stem cell properties, suggesting it could be a key factor for cervical cancer prognosis and a potential target for future therapies.
View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Mutations in the genes , , and cause three clinically overlapping thrombocytopenias characterized by a predisposition to hematological neoplasms. The gene, which encodes a protein involved in protein-protein interactions, is downregulated by RUNX1 during megakaryopoiesis. Mutations in 5'UTR of ANKRD26, leading to ANKRD26-RT, disrupt this regulation, resulting in the persistent expression of ANKRD26, which leads to impaired platelet biogenesis and an increased risk of leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!