There is a debate concerning the definition and extent of tropical dry forest biome and vegetation type at a global spatial scale. We identify the potential extent of the tropical dry forest biome based on bioclimatic definitions and climatic data sets to improve global estimates of distribution, cover, and change. We compared four bioclimatic definitions of the tropical dry forest biome-Murphy and Lugo, Food and Agriculture Organization (FAO), DryFlor, aridity index-using two climatic data sets: WorldClim and Climatologies at High-resolution for the Earth's Land Surface Areas (CHELSA). We then compared each of the eight unique combinations of bioclimatic definitions and climatic data sets using 540 field plots identified as tropical dry forest from a literature search and evaluated the accuracy of World Wildlife Fund tropical and subtropical dry broadleaf forest ecoregions. We used the definition and climate data that most closely matched field data to calculate forest cover in 2000 and change from 2001 to 2020. Globally, there was low agreement (< 58%) between bioclimatic definitions and WWF ecoregions and only 40% of field plots fell within these ecoregions. FAO using CHELSA had the highest agreement with field plots (81%) and was not correlated with the biome extent. Using the FAO definition with CHELSA climatic data set, we estimate 4,931,414 km2 of closed canopy (≥ 40% forest cover) tropical dry forest in 2000 and 4,369,695 km2 in 2020 with a gross loss of 561,719 km2 (11.4%) from 2001 to 2020. Tropical dry forest biome extent varies significantly based on bioclimatic definition used, with nearly half of all tropical dry forest vegetation missed when using ecoregion boundaries alone, especially in Africa. Using site-specific field validation, we find that the FAO definition using CHELSA provides an accurate, standard, and repeatable way to assess tropical dry forest cover and change at a global scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136719 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252063 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!