Computer aided diagnosis (CAD) of biomedical images assists physicians for a fast facilitated tissue characterization. A scheme based on combining fuzzy logic (FL) and deep learning (DL) for automatic semantic segmentation (SS) of tumors in breast ultrasound (BUS) images is proposed. The proposed scheme consists of two steps: the first is a FL based preprocessing, and the second is a Convolutional neural network (CNN) based SS. Eight well-known CNN based SS models have been utilized in the study. Studying the scheme was by a dataset of 400 cancerous BUS images and their corresponding 400 ground truth images. SS process has been applied in two modes: batch and one by one image processing. Three quantitative performance evaluation metrics have been utilized: global accuracy (GA), mean Jaccard Index (mean intersection over union (IoU)), and mean BF (Boundary F1) Score. In the batch processing mode: quantitative metrics' average results over the eight utilized CNNs based SS models over the 400 cancerous BUS images were: 95.45% GA instead of 86.08% without applying fuzzy preprocessing step, 78.70% mean IoU instead of 49.61%, and 68.08% mean BF score instead of 42.63%. Moreover, the resulted segmented images could show tumors' regions more accurate than with only CNN based SS. While, in one by one image processing mode: there has been no enhancement neither qualitatively nor quantitatively. So, only when a batch processing is needed, utilizing the proposed scheme may be helpful in enhancing automatic ss of tumors in BUS images. Otherwise applying the proposed approach on a one-by-one image mode will disrupt segmentation's efficiency. The proposed batch processing scheme may be generalized for an enhanced CNN based SS of a targeted region of interest (ROI) in any batch of digital images. A modified small dataset is available: https://www.kaggle.com/mohammedtgadallah/mt-small-dataset (S1 Data).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136850PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251899PLOS

Publication Analysis

Top Keywords

bus images
16
cnn based
16
batch processing
12
images
9
automatic semantic
8
semantic segmentation
8
based
8
based combining
8
combining fuzzy
8
fuzzy logic
8

Similar Publications

This paper proposes a new strategy for analysing and detecting abnormal passenger behavior and abnormal objects on buses. First, a library of abnormal passenger behaviors and objects on buses is established. Then, a new mask detection and abnormal object detection and analysis (MD-AODA) algorithm is proposed.

View Article and Find Full Text PDF

ShaderNN: A Lightweight and Efficient Inference Engine for Real-time Applications on Mobile GPUs.

Neurocomputing (Amst)

January 2025

Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.

Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.

View Article and Find Full Text PDF

Sequencing and Optical Genome Mapping for the Adventurous Chemist.

Chem Biomed Imaging

December 2024

Faculty of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium.

This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.

View Article and Find Full Text PDF

Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study.

Int J Surg

October 2024

Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement.

Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!