Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136852PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251643PLOS

Publication Analysis

Top Keywords

mechanistic modelling
8
modelling reveal
8
nutrient kinetics
8
microbial interactions
8
combining sims
4
sims mechanistic
4
reveal nutrient
4
kinetics algal-bacterial
4
algal-bacterial mutualism
4
microbial
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy.

View Article and Find Full Text PDF

Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.

ACS Pharmacol Transl Sci

January 2025

Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.

The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide synthesis, serine palmitoyltransferase (SPT).

View Article and Find Full Text PDF

Targeting KAT7 inhibits the progression of colorectal cancer.

Theranostics

January 2025

Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.

View Article and Find Full Text PDF

Discovery of indole analogue Tc3 as a potent pyroptosis inducer and identification of its combination strategy against hepatic carcinoma.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People's Republic of China.

Hepatic carcinoma, one of the most malignant cancers in the world, has limited success with immunotherapy and a poor prognosis in patients. While pyroptosis is considered as a promising immunotherapy strategy for tumors, it still suffers from a lack of effective inducers. We designed, synthesized and screened an indole analogue, , featuring a 2, 4-thiazolidinedione substituted indole scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!