Minimal paths are regarded as a powerful and efficient tool for boundary detection and image segmentation due to its global optimality and the well-established numerical solutions such as fast marching method. In this paper, we introduce a flexible interactive image segmentation model based on the Eikonal partial differential equation (PDE) framework in conjunction with region-based homogeneity enhancement. A key ingredient in the introduced model is the construction of local geodesic metrics, which are capable of integrating anisotropic and asymmetric edge features, implicit region-based homogeneity features and/or curvature regularization. The incorporation of the region-based homogeneity features into the metrics considered relies on an implicit representation of these features, which is one of the contributions of this work. Moreover, we also introduce a way to build simple closed contours as the concatenation of two disjoint open curves. Experimental results prove that the proposed model indeed outperforms state-of-the-art minimal paths-based image segmentation approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2021.3078106 | DOI Listing |
PLoS One
January 2025
Department of Information Technology, Politeknik Negeri Padang, Padang, Sumatera Barat, Indonesia.
Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Ålesund Hospital, Møre og Romsdal Hospital Trust, Ålesund, Norway.
Background: Deep learning-based segmentation of brain metastases relies on large amounts of fully annotated data by domain experts. Semi-supervised learning offers potential efficient methods to improve model performance without excessive annotation burden.
Purpose: This work tests the viability of semi-supervision for brain metastases segmentation.
J Magn Reson Imaging
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom.
Robotic-assisted thoracic surgery has become increasingly utilized in recent years. Complex lung cancer resection surgery can be performed using a robotic approach. It facilitates 3-dimentional visualization of structures, enhanced manipulation of tissues and precise movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!