Traditionally, researchers have used time series and multilevel models to analyze intensive longitudinal data. However, these models do not directly address traits and states which conceptualize the stability and variability implicit in longitudinal research, and they do not explicitly take into account measurement error. An alternative to overcome these drawbacks is to consider structural equation models (state-trait SEMs) for longitudinal data that represent traits and states as latent variables. Most of these models are encompassed in the latent state-trait (LST) theory. These state-trait SEMs can be problematic when the number of measurement occasions increases. As they require the data to be in wide format, these models quickly become overparameterized and lead to nonconvergence issues. For these reasons, multilevel versions of state-trait SEMs have been proposed, which require the data in long format. To study how suitable state-trait SEMs are for intensive longitudinal data, we carried out a simulation study. We compared the traditional single level to the multilevel version of three state-trait SEMs. The selected models were the multistate-singletrait (MSST) model, the common and unique trait-state (CUTS) model, and the trait-state-occasion (TSO) model. Furthermore, we also included an empirical application. Our results indicated that the TSO model performed best in both the simulated and the empirical data. To conclude, we highlight the usefulness of state-trait SEMs to study the psychometric properties of the questionnaires used in intensive longitudinal data. Yet, these models still have multiple limitations, some of which might be overcome by extending them to more general frameworks. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000393DOI Listing

Publication Analysis

Top Keywords

state-trait sems
24
longitudinal data
20
intensive longitudinal
16
traits states
12
structural equation
8
data
8
data models
8
require data
8
tso model
8
models
7

Similar Publications

Traditionally, researchers have used time series and multilevel models to analyze intensive longitudinal data. However, these models do not directly address traits and states which conceptualize the stability and variability implicit in longitudinal research, and they do not explicitly take into account measurement error. An alternative to overcome these drawbacks is to consider structural equation models (state-trait SEMs) for longitudinal data that represent traits and states as latent variables.

View Article and Find Full Text PDF

Study Design: Psychometric testing of the Persian version of Pain Anxiety Symptom Scale 20.

Objective: The aim of this study was to assess the reliability and construct validity of the PASS-20 in nonspecific chronic low back pain (LBP) patients.

Summary Of Background Data: The PASS-20 is a self-report questionnaire that assesses pain-related anxiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!