A strategy to reversibly switch the parallel/antiparallel helical conformation of aromatic double helices through the formation/breakage of a disulfide bond is presented. Single-crystal X-ray structures, NMR, and circular dichroism spectroscopy demonstrate that the double helices with terminal thiol groups favor an antiparallel helical arrangement both in the solid state and in solution, while the P/M bias of helicity induced by chiral segments from another extremity of the sequence is weak in this structural motif. The antiparallel helices can be rearranged to parallel helices through the disulfide connection of the sequences. This change enhances the bias of helical handedness and results in absolute chirality control of the double helices. The handedness-mediated process can be governed by the oxidation-reduction cycle, thereby switching the structural arrangement and the enhancement of chiral bias. In addition, we find that the sequences can dimerize into an intermolecular double helix with the disulfide connection. And the helical handedness is also fully controlled due to the head-to-head structural motif.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202101221 | DOI Listing |
Nat Mater
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
This study explores the effect of fatty acid chain length in regulating the structural changes and physicochemical properties of high-amylose maize starch (HAMS) induced by annealing with fatty acid solution (AFAS). AFAS was found to effectively regulate the conformation of amylose molecular chains within starch granules. Annealing with fatty acids of shorter chain length, such as lauric acid, promoted the formation of both double and single helices within HAMS granules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:
Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.
View Article and Find Full Text PDFCRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!